Jump to content

Oleoylethanolamide: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
No edit summary
Line 48: Line 48:


OEA has been demonstrated to bind to the novel [[cannabinoid receptor]] [[GPR119]].<ref name="pmid16517404">{{cite journal |vauthors=Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C | title = Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. | journal = Cell Metab. | volume = 3 | issue = 3 | pages = 167–175 | year = 2006 | pmid = 16517404 | doi = 10.1016/j.cmet.2006.02.004 | doi-access = free }}</ref> OEA has been suggested to be the receptor's endogenous ligand.<ref name="pmid17906678">{{cite journal | author = Brown AJ. | title = Novel cannabinoid receptors. | journal = Br J Pharmacol| volume = 152 | issue = 5 | pages = 567–575 | year = 2007 | pmid = 17906678 | doi = 10.1038/sj.bjp.0707481 | pmc = 2190013 }}</ref>
OEA has been demonstrated to bind to the novel [[cannabinoid receptor]] [[GPR119]].<ref name="pmid16517404">{{cite journal |vauthors=Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C | title = Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. | journal = Cell Metab. | volume = 3 | issue = 3 | pages = 167–175 | year = 2006 | pmid = 16517404 | doi = 10.1016/j.cmet.2006.02.004 | doi-access = free }}</ref> OEA has been suggested to be the receptor's endogenous ligand.<ref name="pmid17906678">{{cite journal | author = Brown AJ. | title = Novel cannabinoid receptors. | journal = Br J Pharmacol| volume = 152 | issue = 5 | pages = 567–575 | year = 2007 | pmid = 17906678 | doi = 10.1038/sj.bjp.0707481 | pmc = 2190013 }}</ref>

OEA has been hypothesized to play a key role in the inhibition of food seeking behavior and in the lipolysis of brown bears "[[ursus arctos]]" during the hibernation season together with the alteration of the endocannabinoid system required for the metabolic changes for hibernation. <ref name="pmid33292302">{{cite journal |vauthors=Boyer, C., Cussonneau, L., Brun, C., Deval, C., Pais de Barros, J. P., Chanon, S., Bernoud-Hubac, N., Daira, P., Evans, A. L., Arnemo, J. M., Swenson, J. E., Gauquelin-Koch, G., Simon, C., Blanc, S., Combaret, L., Bertile, F., & Lefai, E. |title=Specific shifts in the endocannabinoid system in hibernating brown bears. |journal=Frontiers in Zoology |volume=17 |issue=1 |pages=35 |year=2020 |pmid=33292302 |doi=10.1186/s12983-020-00380-y |pmc=7681968}}</ref>


OEA has been reported to lengthen the life span of the roundworm ''[[Caenorhabditis elegans]]'' through interactions with lysomal molecules.<ref name="pmid25554789">{{cite journal |vauthors=Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M, Sanor L, Moore DD, Ortlund EA, Zechner R, Wang MC |title=Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans |journal=Science |volume=347 |issue=6217 |pages=83–6 |year=2015 |pmid=25554789 |doi=10.1126/science.1258857 |pmc=4425353}}</ref>
OEA has been reported to lengthen the life span of the roundworm ''[[Caenorhabditis elegans]]'' through interactions with lysomal molecules.<ref name="pmid25554789">{{cite journal |vauthors=Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M, Sanor L, Moore DD, Ortlund EA, Zechner R, Wang MC |title=Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans |journal=Science |volume=347 |issue=6217 |pages=83–6 |year=2015 |pmid=25554789 |doi=10.1126/science.1258857 |pmc=4425353}}</ref>

Revision as of 14:10, 30 May 2022

Oleoylethanolamide
Names
Preferred IUPAC name
(9Z)-N-(2-Hydroxyethyl)octadec-9-enamide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.003.532 Edit this at Wikidata
UNII
  • InChI=1S/C20H39NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-20(23)21-18-19-22/h9-10,22H,2-8,11-19H2,1H3,(H,21,23)/b10-9- ☒N
    Key: BOWVQLFMWHZBEF-KTKRTIGZSA-N ☒N
  • InChI=1/C20H39NO2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-20(23)21-18-19-22/h9-10,22H,2-8,11-19H2,1H3,(H,21,23)/b10-9-
    Key: BOWVQLFMWHZBEF-KTKRTIGZBW
  • CCCCCCCC\C=C/CCCCCCCC(=O)NCCO
Properties
C20H39NO2
Molar mass 325.537 g·mol−1
Appearance White solid
Melting point 59–60 °C (138–140 °F; 332–333 K)
Solubility in ethanol and DMSO Soluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Oleoylethanolamide (OEA) is an endogenous peroxisome proliferator-activated receptor alpha (PPAR-α) agonist. It is a naturally occurring ethanolamide lipid that regulates feeding and body weight in vertebrates ranging from mice to pythons.[1][2][3]

OEA is a shorter, monounsaturated analogue of the endocannabinoid anandamide, but unlike anandamide it acts independently of the cannabinoid pathway, regulating PPAR-α activity to stimulate lipolysis.[4]

OEA is produced by the small intestine following feeding in two steps. First an N-acyl transferase (NAT) activity joins the free amino terminus of phosphatidylethanolamine (PE) to the oleoyl group (one variety of acyl group) derived from sn-1-oleoyl-phosphatidylcholine, which contains the fatty acid oleic acid at the sn-1 position.[5] This produces an N-acylphosphatidylethanolamine, which is then split (hydrolyzed) by N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) into phosphatidic acid and OEA. The biosynthesis of OEA and other bioactive lipid amides is modulated by bile acids.[6]

OEA has been demonstrated to bind to the novel cannabinoid receptor GPR119.[7] OEA has been suggested to be the receptor's endogenous ligand.[8]

OEA has been hypothesized to play a key role in the inhibition of food seeking behavior and in the lipolysis of brown bears "ursus arctos" during the hibernation season together with the alteration of the endocannabinoid system required for the metabolic changes for hibernation. [9]

OEA has been reported to lengthen the life span of the roundworm Caenorhabditis elegans through interactions with lysomal molecules.[10]

References

  1. ^ Gaetani S, Oveisi F, Piomelli D (2003). "Modulation of meal pattern in the rat by the anorexic lipid mediator oleoylethanolamine". Neuropsychopharmacology. 28 (7): 1311–6. doi:10.1038/sj.npp.1300166. PMID 12700681.
  2. ^ Lo Verme J, Gaetani S, Fu J, Oveisi F, Burton K, Piomelli D (2005). "Regulation of food intake by oleoylethanolamine". Cell. Mol. Life Sci. 62 (6): 708–16. doi:10.1007/s00018-004-4494-0. PMID 15770421. S2CID 26838764.
  3. ^ Giuseppe Astarita; Bryan C. Rourke; Johnnie B. Andersen; Jin Fu; Janet H. Kim; Albert F. Bennett; James W. Hicks & Daniele Piomelli (2005-12-22). "Postprandial increase of oleoylethanolamine mobilization in small intestine of the Burmese python (Python molurus)". Am J Physiol Regul Integr Comp Physiol. 290 (5): R1407 – R1412. doi:10.1152/ajpregu.00664.2005. PMID 16373434.
  4. ^ Gaetani S, Kaye WH, Cuomo V, Piomelli D (September 2008). "Role of endocannabinoids and their analogues in obesity and eating disorders". Eat Weight Disord. 13 (3): e42–8. PMID 19011363.
  5. ^ illustration
  6. ^ Magotti P, Bauer I, Igarashi M, Babagoli M, Marotta R, Piomelli D, Garau G (Dec 2014). "Structure of Human N-Acylphosphatidylethanolamine-Hydrolyzing Phospholipase D: Regulation of Fatty Acid Ethanolamide Biosynthesis by Bile Acids". Structure. 23 (3): 598–604. doi:10.1016/j.str.2014.12.018. PMC 4351732. PMID 25684574.
  7. ^ Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, Jackson HC, Procter MJ, Rasamison CM, Tang-Christensen M, Widdowson PS, Williams GM, Reynet C (2006). "Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents". Cell Metab. 3 (3): 167–175. doi:10.1016/j.cmet.2006.02.004. PMID 16517404.
  8. ^ Brown AJ. (2007). "Novel cannabinoid receptors". Br J Pharmacol. 152 (5): 567–575. doi:10.1038/sj.bjp.0707481. PMC 2190013. PMID 17906678.
  9. ^ Boyer, C., Cussonneau, L., Brun, C., Deval, C., Pais dB, J. P., Chanon, S., Bernoud-Hubac, N., Daira, P., Evans, A. L., Arnemo, J. M., Swenson, J. E., Gauquelin-Koch, G., Simon, C., Blanc, S., Combaret, L., Bertile, F., & Lefai, E. (2020). "Specific shifts in the endocannabinoid system in hibernating brown bears". Frontiers in Zoology. 17 (1): 35. doi:10.1186/s12983-020-00380-y. PMC 7681968. PMID 33292302. {{cite journal}}: Vancouver style error: non-Latin character in name 2 (help)CS1 maint: unflagged free DOI (link)
  10. ^ Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M, Sanor L, Moore DD, Ortlund EA, Zechner R, Wang MC (2015). "Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans". Science. 347 (6217): 83–6. doi:10.1126/science.1258857. PMC 4425353. PMID 25554789.