Jump to content

Bekenstein bound: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Equations: fixed unit mistake
Tags: Mobile edit Mobile web edit
Citation bot (talk | contribs)
Add: s2cid. | Use this bot. Report bugs. | Suggested by Abductive | Category:Limits of computation | #UCB_Category 13/13
Line 26: Line 26:


==Origins==
==Origins==
Bekenstein derived the bound from heuristic arguments involving [[black hole]]s. If a system exists that violates the bound, i.e., by having too much entropy, Bekenstein argued that it would be possible to violate the [[second law of thermodynamics]] by lowering it into a black hole. In 1995, [[Theodore Jacobson|Ted Jacobson]] demonstrated that the [[Einstein field equations]] (i.e., [[general relativity]]) can be derived by assuming that the Bekenstein bound and the [[laws of thermodynamics]] are true.<ref name="Jacobson1995">{{cite journal |doi=10.1103/PhysRevLett.75.1260 |pmid=10060248 |bibcode=1995PhRvL..75.1260J |arxiv=gr-qc/9504004 |citeseerx=10.1.1.54.6675 |url=http://www.gravityresearchfoundation.org/pdf/awarded/1995/jacobson.pdf |title=Thermodynamics of Spacetime: The Einstein Equation of State |journal=Physical Review Letters |volume=75 |issue=7 |pages=1260–1263 |year=1995 |last1=Jacobson |first1=Ted |access-date=2010-05-23 |archive-date=2010-05-23 |archive-url=https://www.webcitation.org/5pw2xrwBb?url=http://www.gravityresearchfoundation.org/pdf/awarded/1995/jacobson.pdf |url-status=dead }}</ref><ref name="Smolin2002">[[Lee Smolin]], ''[[Three Roads to Quantum Gravity]]'' (New York, N.Y.: [[Basic Books]], 2002), pp. 173 and 175, {{ISBN|0-465-07836-2}}, {{LCCN|2007310371}}.</ref> However, while a number of arguments were devised which show that some form of the bound must exist in order for the laws of thermodynamics and general relativity to be mutually consistent, the precise formulation of the bound was a matter of debate until Casini's work in 2008.<ref name="Bekenstein2005">{{Cite journal | doi=10.1007/s10701-005-7350-7| title=How does the Entropy/Information Bound Work?| journal=Foundations of Physics| volume=35| issue=11| pages=1805–1823| year=2005| last1=Bekenstein| first1=Jacob D.| bibcode=2005FoPh...35.1805B| arxiv=quant-ph/0404042}}</ref><ref name="Bekenstein2008">{{Cite journal | doi=10.4249/scholarpedia.7374| title=Bekenstein bound| journal=Scholarpedia| volume=3| issue=10| pages=7374| year=2008| last1=Bekenstein| first1=Jacob| bibcode=2008SchpJ...3.7374B| doi-access=free}}</ref><ref name="Bousso1999-6">{{Cite journal |doi = 10.1088/1126-6708/1999/06/028|title = Holography in general space-times|journal = Journal of High Energy Physics|volume = 1999|issue = 6|pages = 028|year = 1999|last1 = Bousso|first1 = Raphael|bibcode = 1999JHEP...06..028B|arxiv = hep-th/9906022}}</ref><ref name="Bousso1999-7">{{Cite journal |doi = 10.1088/1126-6708/1999/07/004|title = A covariant entropy conjecture|journal = Journal of High Energy Physics|volume = 1999|issue = 7|pages = 004|year = 1999|last1 = Bousso|first1 = Raphael|bibcode = 1999JHEP...07..004B|arxiv = hep-th/9905177}}</ref><ref name="Bousso2000">{{Cite journal |doi = 10.1088/0264-9381/17/5/309|title = The holographic principle for general backgrounds|journal = Classical and Quantum Gravity|volume = 17|issue = 5|pages = 997–1005|year = 2000|last1 = Bousso|first1 = Raphael|bibcode = 2000CQGra..17..997B|arxiv = hep-th/9911002}}</ref><ref name="Bekenstein2000">{{Cite journal |doi = 10.1016/S0370-2693(00)00450-0|title = Holographic bound from second law of thermodynamics|journal = Physics Letters B|volume = 481|issue = 2–4|pages = 339–345|year = 2000|last1 = Bekenstein|first1 = Jacob D.|bibcode = 2000PhLB..481..339B|arxiv = hep-th/0003058}}</ref><ref name="Bousso2002">{{cite journal|doi=10.1103/RevModPhys.74.825|url=http://bib.tiera.ru/DVD-005/Bousso_R._The_holographic_principle_(2002)(en)(50s).pdf|title=The holographic principle|journal=Reviews of Modern Physics|volume=74|issue=3|pages=825–874|year=2002|last1=Bousso|first1=Raphael|bibcode=2002RvMP...74..825B|arxiv=hep-th/0203101|access-date=2010-05-23|archive-date=2010-05-23|archive-url=https://www.webcitation.org/5pw1VZbGO?url=http://bib.tiera.ru/DVD-005/Bousso_R._The_holographic_principle_(2002)(en)(50s).pdf|url-status=dead}}</ref><ref name="Bekenstein2003">Jacob D. Bekenstein, [http://www.phys.huji.ac.il/~bekenste/Holographic_Univ.pdf "Information in the Holographic Universe: Theoretical results about black holes suggest that the universe could be like a gigantic hologram"], ''[[Scientific American]]'', Vol. 289, No. 2 (August 2003), pp. 58-65. [https://www.webcitation.org/5pvxM7hws?url=http://www.phys.huji.ac.il/%7Ebekenste/Holographic_Univ.pdf Mirror link].</ref><ref name="BoussoEtAl2003">{{Cite journal |doi = 10.1103/PhysRevD.68.064001|title = Simple sufficient conditions for the generalized covariant entropy bound|journal = Physical Review D|volume = 68|issue = 6|pages = 064001|year = 2003|last1 = Bousso|first1 = Raphael|last2 = Flanagan|first2 = Éanna É.|last3 = Marolf|first3 = Donald|bibcode = 2003PhRvD..68f4001B|arxiv = hep-th/0305149}}</ref><ref name="Bekenstein2004">{{Cite journal | doi=10.1080/00107510310001632523| title=Black holes and information theory| journal=Contemporary Physics| volume=45| issue=1| pages=31–43| year=2004| last1=Bekenstein| first1=Jacob D.| bibcode=2004ConPh..45...31B| arxiv=quant-ph/0311049}}</ref><ref name="Tipler2005">{{cite journal |doi=10.1088/0034-4885/68/4/R04 |url=http://math.tulane.edu/~tipler/theoryofeverything.pdf|title=The structure of the world from pure numbers|journal=Reports on Progress in Physics|volume=68|issue=4|pages=897–964|year=2005|last1=Tipler|first1=F. J.|bibcode=2005RPPh...68..897T|arxiv=0704.3276}}. Tipler gives a number of arguments for maintaining that Bekenstein's original formulation of the bound is the correct form. See in particular the paragraph beginning with "A few points ..." on p. 903 of the ''Rep. Prog. Phys.'' paper (or p. 9 of the ''arXiv'' version), and the discussions on the Bekenstein bound that follow throughout the paper.</ref>
Bekenstein derived the bound from heuristic arguments involving [[black hole]]s. If a system exists that violates the bound, i.e., by having too much entropy, Bekenstein argued that it would be possible to violate the [[second law of thermodynamics]] by lowering it into a black hole. In 1995, [[Theodore Jacobson|Ted Jacobson]] demonstrated that the [[Einstein field equations]] (i.e., [[general relativity]]) can be derived by assuming that the Bekenstein bound and the [[laws of thermodynamics]] are true.<ref name="Jacobson1995">{{cite journal |doi=10.1103/PhysRevLett.75.1260 |pmid=10060248 |bibcode=1995PhRvL..75.1260J |arxiv=gr-qc/9504004 |citeseerx=10.1.1.54.6675 |url=http://www.gravityresearchfoundation.org/pdf/awarded/1995/jacobson.pdf |title=Thermodynamics of Spacetime: The Einstein Equation of State |journal=Physical Review Letters |volume=75 |issue=7 |pages=1260–1263 |year=1995 |last1=Jacobson |first1=Ted |s2cid=13223728 |access-date=2010-05-23 |archive-date=2010-05-23 |archive-url=https://www.webcitation.org/5pw2xrwBb?url=http://www.gravityresearchfoundation.org/pdf/awarded/1995/jacobson.pdf |url-status=dead }}</ref><ref name="Smolin2002">[[Lee Smolin]], ''[[Three Roads to Quantum Gravity]]'' (New York, N.Y.: [[Basic Books]], 2002), pp. 173 and 175, {{ISBN|0-465-07836-2}}, {{LCCN|2007310371}}.</ref> However, while a number of arguments were devised which show that some form of the bound must exist in order for the laws of thermodynamics and general relativity to be mutually consistent, the precise formulation of the bound was a matter of debate until Casini's work in 2008.<ref name="Bekenstein2005">{{Cite journal | doi=10.1007/s10701-005-7350-7| title=How does the Entropy/Information Bound Work?| journal=Foundations of Physics| volume=35| issue=11| pages=1805–1823| year=2005| last1=Bekenstein| first1=Jacob D.| bibcode=2005FoPh...35.1805B| arxiv=quant-ph/0404042| s2cid=118942877}}</ref><ref name="Bekenstein2008">{{Cite journal | doi=10.4249/scholarpedia.7374| title=Bekenstein bound| journal=Scholarpedia| volume=3| issue=10| pages=7374| year=2008| last1=Bekenstein| first1=Jacob| bibcode=2008SchpJ...3.7374B| doi-access=free}}</ref><ref name="Bousso1999-6">{{Cite journal |doi = 10.1088/1126-6708/1999/06/028|title = Holography in general space-times|journal = Journal of High Energy Physics|volume = 1999|issue = 6|pages = 028|year = 1999|last1 = Bousso|first1 = Raphael|bibcode = 1999JHEP...06..028B|arxiv = hep-th/9906022|s2cid = 119518763}}</ref><ref name="Bousso1999-7">{{Cite journal |doi = 10.1088/1126-6708/1999/07/004|title = A covariant entropy conjecture|journal = Journal of High Energy Physics|volume = 1999|issue = 7|pages = 004|year = 1999|last1 = Bousso|first1 = Raphael|bibcode = 1999JHEP...07..004B|arxiv = hep-th/9905177|s2cid = 9545752}}</ref><ref name="Bousso2000">{{Cite journal |doi = 10.1088/0264-9381/17/5/309|title = The holographic principle for general backgrounds|journal = Classical and Quantum Gravity|volume = 17|issue = 5|pages = 997–1005|year = 2000|last1 = Bousso|first1 = Raphael|bibcode = 2000CQGra..17..997B|arxiv = hep-th/9911002|s2cid = 14741276}}</ref><ref name="Bekenstein2000">{{Cite journal |doi = 10.1016/S0370-2693(00)00450-0|title = Holographic bound from second law of thermodynamics|journal = Physics Letters B|volume = 481|issue = 2–4|pages = 339–345|year = 2000|last1 = Bekenstein|first1 = Jacob D.|bibcode = 2000PhLB..481..339B|arxiv = hep-th/0003058|s2cid = 119427264}}</ref><ref name="Bousso2002">{{cite journal|doi=10.1103/RevModPhys.74.825|url=http://bib.tiera.ru/DVD-005/Bousso_R._The_holographic_principle_(2002)(en)(50s).pdf|title=The holographic principle|journal=Reviews of Modern Physics|volume=74|issue=3|pages=825–874|year=2002|last1=Bousso|first1=Raphael|bibcode=2002RvMP...74..825B|arxiv=hep-th/0203101|s2cid=55096624|access-date=2010-05-23|archive-date=2010-05-23|archive-url=https://www.webcitation.org/5pw1VZbGO?url=http://bib.tiera.ru/DVD-005/Bousso_R._The_holographic_principle_(2002)(en)(50s).pdf|url-status=dead}}</ref><ref name="Bekenstein2003">Jacob D. Bekenstein, [http://www.phys.huji.ac.il/~bekenste/Holographic_Univ.pdf "Information in the Holographic Universe: Theoretical results about black holes suggest that the universe could be like a gigantic hologram"], ''[[Scientific American]]'', Vol. 289, No. 2 (August 2003), pp. 58-65. [https://www.webcitation.org/5pvxM7hws?url=http://www.phys.huji.ac.il/%7Ebekenste/Holographic_Univ.pdf Mirror link].</ref><ref name="BoussoEtAl2003">{{Cite journal |doi = 10.1103/PhysRevD.68.064001|title = Simple sufficient conditions for the generalized covariant entropy bound|journal = Physical Review D|volume = 68|issue = 6|pages = 064001|year = 2003|last1 = Bousso|first1 = Raphael|last2 = Flanagan|first2 = Éanna É.|last3 = Marolf|first3 = Donald|bibcode = 2003PhRvD..68f4001B|arxiv = hep-th/0305149|s2cid = 119049155}}</ref><ref name="Bekenstein2004">{{Cite journal | doi=10.1080/00107510310001632523| title=Black holes and information theory| journal=Contemporary Physics| volume=45| issue=1| pages=31–43| year=2004| last1=Bekenstein| first1=Jacob D.| bibcode=2004ConPh..45...31B| arxiv=quant-ph/0311049| s2cid=118970250}}</ref><ref name="Tipler2005">{{cite journal |doi=10.1088/0034-4885/68/4/R04 |url=http://math.tulane.edu/~tipler/theoryofeverything.pdf|title=The structure of the world from pure numbers|journal=Reports on Progress in Physics|volume=68|issue=4|pages=897–964|year=2005|last1=Tipler|first1=F. J.|bibcode=2005RPPh...68..897T|arxiv=0704.3276}}. Tipler gives a number of arguments for maintaining that Bekenstein's original formulation of the bound is the correct form. See in particular the paragraph beginning with "A few points ..." on p. 903 of the ''Rep. Prog. Phys.'' paper (or p. 9 of the ''arXiv'' version), and the discussions on the Bekenstein bound that follow throughout the paper.</ref>


==Proof in quantum field theory==
==Proof in quantum field theory==


A proof of the Bekenstein bound in the framework of [[quantum field theory]] was given in 2008 by Casini.<ref>{{cite journal |last1=Casini |first1=Horacio |title=Relative entropy and the Bekenstein bound |journal= Classical and Quantum Gravity|date=2008 |volume=25 |issue=20 |pages=205021 |doi=10.1088/0264-9381/25/20/205021 |arxiv=0804.2182 |bibcode=2008CQGra..25t5021C }}</ref> One of the crucial insights of the proof was to find a proper interpretation of the quantities appearing on both sides of the bound.
A proof of the Bekenstein bound in the framework of [[quantum field theory]] was given in 2008 by Casini.<ref>{{cite journal |last1=Casini |first1=Horacio |title=Relative entropy and the Bekenstein bound |journal= Classical and Quantum Gravity|date=2008 |volume=25 |issue=20 |pages=205021 |doi=10.1088/0264-9381/25/20/205021 |arxiv=0804.2182 |bibcode=2008CQGra..25t5021C |s2cid=14456556 }}</ref> One of the crucial insights of the proof was to find a proper interpretation of the quantities appearing on both sides of the bound.


Naive definitions of entropy and energy density in Quantum Field Theory suffer from [[Ultraviolet_divergence|ultraviolet divergences]]. In the case of the Bekenstein bound, ultraviolet divergences can be avoided by taking differences between quantities computed in an excited state and the same quantities computed in the vacuum state. For example, given a spatial region <math>V</math>, Casini defines the entropy on the left-hand side of the Bekenstein bound as
Naive definitions of entropy and energy density in Quantum Field Theory suffer from [[Ultraviolet_divergence|ultraviolet divergences]]. In the case of the Bekenstein bound, ultraviolet divergences can be avoided by taking differences between quantities computed in an excited state and the same quantities computed in the vacuum state. For example, given a spatial region <math>V</math>, Casini defines the entropy on the left-hand side of the Bekenstein bound as

Revision as of 21:03, 20 September 2021

According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.

In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of energy—or conversely, the maximal amount of information required to perfectly describe a given physical system down to the quantum level.[1] It implies that the information of a physical system, or the information necessary to perfectly describe that system, must be finite if the region of space and the energy are finite. In computer science, this implies that there is a maximal information-processing rate (Bremermann's limit) for a physical system that has a finite size and energy, and that a Turing machine with finite physical dimensions and unbounded memory is not physically possible.

Equations

The universal form of the bound was originally found by Jacob Bekenstein in 1981 as the inequality[1][2][3]

where S is the entropy, k is Boltzmann's constant, R is the radius of a sphere that can enclose the given system, E is the total mass–energy including any rest masses, ħ is the reduced Planck constant, and c is the speed of light. Note that while gravity plays a significant role in its enforcement, the expression for the bound does not contain the gravitational constant G.

In informational terms, the relation between thermodynamic entropy S and Shannon entropy H is given by

whence

where H is the Shannon entropy expressed in number of bits contained in the quantum states in the sphere. The ln 2 factor comes from defining the information as the logarithm to the base 2 of the number of quantum states.[4] Using mass–energy equivalence, the informational limit may be reformulated as

where is the mass (in kg), and is the radius (in meter) of the system.

Origins

Bekenstein derived the bound from heuristic arguments involving black holes. If a system exists that violates the bound, i.e., by having too much entropy, Bekenstein argued that it would be possible to violate the second law of thermodynamics by lowering it into a black hole. In 1995, Ted Jacobson demonstrated that the Einstein field equations (i.e., general relativity) can be derived by assuming that the Bekenstein bound and the laws of thermodynamics are true.[5][6] However, while a number of arguments were devised which show that some form of the bound must exist in order for the laws of thermodynamics and general relativity to be mutually consistent, the precise formulation of the bound was a matter of debate until Casini's work in 2008.[2][3][7][8][9][10][11][12][13][14][15]

Proof in quantum field theory

A proof of the Bekenstein bound in the framework of quantum field theory was given in 2008 by Casini.[16] One of the crucial insights of the proof was to find a proper interpretation of the quantities appearing on both sides of the bound.

Naive definitions of entropy and energy density in Quantum Field Theory suffer from ultraviolet divergences. In the case of the Bekenstein bound, ultraviolet divergences can be avoided by taking differences between quantities computed in an excited state and the same quantities computed in the vacuum state. For example, given a spatial region , Casini defines the entropy on the left-hand side of the Bekenstein bound as

where is the Von Neumann entropy of the reduced density matrix associated with in the excited state , and is the corresponding Von Neumann entropy for the vacuum state .

On the right-hand side of the Bekenstein bound, a difficult point is to give a rigorous interpretation of the quantity , where is a characteristic length scale of the system and is a characteristic energy. This product has the same units as the generator of a Lorentz boost, and the natural analog of a boost in this situation is the modular Hamiltonian of the vacuum state . Casini defines the right-hand side of the Bekenstein bound as the difference between the expectation value of the modular Hamiltonian in the excited state and the vacuum state,

With these definitions, the bound reads

which can be rearranged to give

This is simply the statement of positivity of relative entropy, which proves the Bekenstein bound.

Examples

Black holes

It happens that the Bekenstein–Hawking boundary entropy of three-dimensional black holes exactly saturates the bound

where is Boltzmann's constant, A is the two-dimensional area of the black hole's event horizon and is the Planck length.

The bound is closely associated with black hole thermodynamics, the holographic principle and the covariant entropy bound of quantum gravity, and can be derived from a conjectured strong form of the latter.

Human brain

An average human brain has a mass of 1.5 kg and a volume of 1260 cm3. If the brain is approximated by a sphere, then the radius will be 6.7 cm.

The informational Bekenstein bound will be about 2.6×1042 bits and represents the maximal information needed to perfectly recreate an average human brain down to the quantum level. This means that the number of states of the human brain must be less than .

See also

References

  1. ^ a b Bekenstein, Jacob D. (1981). "Universal upper bound on the entropy-to-energy ratio for bounded systems" (PDF). Physical Review D. 23 (2): 287–298. Bibcode:1981PhRvD..23..287B. doi:10.1103/PhysRevD.23.287.
  2. ^ a b Bekenstein, Jacob D. (2005). "How does the Entropy/Information Bound Work?". Foundations of Physics. 35 (11): 1805–1823. arXiv:quant-ph/0404042. Bibcode:2005FoPh...35.1805B. doi:10.1007/s10701-005-7350-7. S2CID 118942877.
  3. ^ a b Bekenstein, Jacob (2008). "Bekenstein bound". Scholarpedia. 3 (10): 7374. Bibcode:2008SchpJ...3.7374B. doi:10.4249/scholarpedia.7374.
  4. ^ Tipler, F. J. (2005). "The structure of the world from pure numbers" (PDF). Reports on Progress in Physics. 68 (4): 897–964. arXiv:0704.3276. Bibcode:2005RPPh...68..897T. doi:10.1088/0034-4885/68/4/R04.
  5. ^ Jacobson, Ted (1995). "Thermodynamics of Spacetime: The Einstein Equation of State" (PDF). Physical Review Letters. 75 (7): 1260–1263. arXiv:gr-qc/9504004. Bibcode:1995PhRvL..75.1260J. CiteSeerX 10.1.1.54.6675. doi:10.1103/PhysRevLett.75.1260. PMID 10060248. S2CID 13223728. Archived from the original (PDF) on 2010-05-23. Retrieved 2010-05-23.
  6. ^ Lee Smolin, Three Roads to Quantum Gravity (New York, N.Y.: Basic Books, 2002), pp. 173 and 175, ISBN 0-465-07836-2, LCCN 2007-310371.
  7. ^ Bousso, Raphael (1999). "Holography in general space-times". Journal of High Energy Physics. 1999 (6): 028. arXiv:hep-th/9906022. Bibcode:1999JHEP...06..028B. doi:10.1088/1126-6708/1999/06/028. S2CID 119518763.
  8. ^ Bousso, Raphael (1999). "A covariant entropy conjecture". Journal of High Energy Physics. 1999 (7): 004. arXiv:hep-th/9905177. Bibcode:1999JHEP...07..004B. doi:10.1088/1126-6708/1999/07/004. S2CID 9545752.
  9. ^ Bousso, Raphael (2000). "The holographic principle for general backgrounds". Classical and Quantum Gravity. 17 (5): 997–1005. arXiv:hep-th/9911002. Bibcode:2000CQGra..17..997B. doi:10.1088/0264-9381/17/5/309. S2CID 14741276.
  10. ^ Bekenstein, Jacob D. (2000). "Holographic bound from second law of thermodynamics". Physics Letters B. 481 (2–4): 339–345. arXiv:hep-th/0003058. Bibcode:2000PhLB..481..339B. doi:10.1016/S0370-2693(00)00450-0. S2CID 119427264.
  11. ^ Bousso, Raphael (2002). "The holographic principle" (PDF). Reviews of Modern Physics. 74 (3): 825–874. arXiv:hep-th/0203101. Bibcode:2002RvMP...74..825B. doi:10.1103/RevModPhys.74.825. S2CID 55096624. Archived from the original (PDF) on 2010-05-23. Retrieved 2010-05-23.
  12. ^ Jacob D. Bekenstein, "Information in the Holographic Universe: Theoretical results about black holes suggest that the universe could be like a gigantic hologram", Scientific American, Vol. 289, No. 2 (August 2003), pp. 58-65. Mirror link.
  13. ^ Bousso, Raphael; Flanagan, Éanna É.; Marolf, Donald (2003). "Simple sufficient conditions for the generalized covariant entropy bound". Physical Review D. 68 (6): 064001. arXiv:hep-th/0305149. Bibcode:2003PhRvD..68f4001B. doi:10.1103/PhysRevD.68.064001. S2CID 119049155.
  14. ^ Bekenstein, Jacob D. (2004). "Black holes and information theory". Contemporary Physics. 45 (1): 31–43. arXiv:quant-ph/0311049. Bibcode:2004ConPh..45...31B. doi:10.1080/00107510310001632523. S2CID 118970250.
  15. ^ Tipler, F. J. (2005). "The structure of the world from pure numbers" (PDF). Reports on Progress in Physics. 68 (4): 897–964. arXiv:0704.3276. Bibcode:2005RPPh...68..897T. doi:10.1088/0034-4885/68/4/R04.. Tipler gives a number of arguments for maintaining that Bekenstein's original formulation of the bound is the correct form. See in particular the paragraph beginning with "A few points ..." on p. 903 of the Rep. Prog. Phys. paper (or p. 9 of the arXiv version), and the discussions on the Bekenstein bound that follow throughout the paper.
  16. ^ Casini, Horacio (2008). "Relative entropy and the Bekenstein bound". Classical and Quantum Gravity. 25 (20): 205021. arXiv:0804.2182. Bibcode:2008CQGra..25t5021C. doi:10.1088/0264-9381/25/20/205021. S2CID 14456556.