Jump to content

Guanosine triphosphate: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 70: Line 70:


==Precursor for synthesis of riboflavin==
==Precursor for synthesis of riboflavin==
GTP, in combination with [[Ribulose 5-phosphate]], are the precursor compounds for the synthesis of [[riboflavin]] (vitamin B<sub>2</sub>).<ref name=PKIN2020B2>{{cite book |vauthors=Merrill AH, McCormick DB |title = Present Knowledge in Nutrition, Eleventh Edition |chapter = Riboflavin |editor=BP Marriott |editor2=DF Birt |editor3=VA Stallings|editor4=AA Yates |publisher = Academic Press (Elsevier) |year=2020 |location = London, United Kingdom |pages = 189–208 |isbn=978-0-323-66162-1}}</ref>
GTP, in combination with [[Ribulose 5-phosphate|ribulose 5-phosphate]], are the precursor compounds for the synthesis of [[riboflavin]] (vitamin B<sub>2</sub>).<ref name=PKIN2020B2>{{cite book |vauthors=Merrill AH, McCormick DB |title = Present Knowledge in Nutrition, Eleventh Edition |chapter = Riboflavin |editor=BP Marriott |editor2=DF Birt |editor3=VA Stallings|editor4=AA Yates |publisher = Academic Press (Elsevier) |year=2020 |location = London, United Kingdom |pages = 189–208 |isbn=978-0-323-66162-1}}</ref>


==Biosynthesis==
==Biosynthesis==

Revision as of 12:20, 5 October 2021

Guanosine triphosphate
Skeletal formula of guanosine triphosphate
Space-filling model of the guanosine triphosphate anion
Names
Preferred IUPAC name
O1-{[(2R,3S,4R,5R)-5-(2-Amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl} tetrahydrogen triphosphate
Other names
guanosine triphosphate, 9-β-D-ribofuranosylguanine-5'-triphosphate, 9-β-D-ribofuranosyl-2-amino-6-oxo-purine-5'-triphosphate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.001.498 Edit this at Wikidata
KEGG
MeSH Guanosine+triphosphate
UNII
  • InChI=1S/C10H16N5O14P3/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(27-9)1-26-31(22,23)29-32(24,25)28-30(19,20)21/h2-3,5-6,9,16-17H,1H2,(H,22,23)(H,24,25)(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1 checkY
    Key: XKMLYUALXHKNFT-UUOKFMHZSA-N checkY
  • InChI=1/C10H16N5O14P3/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(27-9)1-26-31(22,23)29-32(24,25)28-30(19,20)21/h2-3,5-6,9,16-17H,1H2,(H,22,23)(H,24,25)(H2,19,20,21)(H3,11,13,14,18)/t3-,5-,6-,9-/m1/s1
    Key: XKMLYUALXHKNFT-UUOKFMHZBF
  • c1nc2c(n1[C@H]3[C@@H]([C@@H]([C@H](O3)CO[P@@](=O)(O)O[P@](=O)(O)OP(=O)(O)O)O)O)[nH]c(nc2=O)N
Properties
C10H16N5O14P3
Molar mass 523.180 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Guanosine-5'-triphosphate (GTP) is a purine nucleoside triphosphate. It is one of the building blocks needed for the synthesis of RNA during the transcription process. Its structure is similar to that of the guanosine nucleoside, the only difference being that nucleotides like GTP have phosphates on their ribose sugar. GTP has the guanine nucleobase attached to the 1' carbon of the ribose and it has the triphosphate moiety attached to ribose's 5' carbon.

It also has the role of a source of energy or an activator of substrates in metabolic reactions, like that of ATP, but more specific. It is used as a source of energy for protein synthesis and gluconeogenesis.

GTP is essential to signal transduction, in particular with G-proteins, in second-messenger mechanisms where it is converted to guanosine diphosphate (GDP) through the action of GTPases.

Uses

Energy transfer

GTP is involved in energy transfer within the cell. For instance, a GTP molecule is generated by one of the enzymes in the citric acid cycle. This is tantamount to the generation of one molecule of ATP, since GTP is readily converted to ATP with nucleoside-diphosphate kinase (NDK).[1]

Genetic translation

During the elongation stage of translation, GTP is used as an energy source for the binding of a new amino-bound tRNA to the A site of the ribosome. GTP is also used as an energy source for the translocation of the ribosome towards the 3' end of the mRNA.[2]

Microtubule dynamic instability

During microtubule polymerization, each heterodimer formed by an alpha and a beta tubulin molecule carries two GTP molecules, and the GTP is hydrolyzed to GDP when the tubulin dimers are added to the plus end of the growing microtubule. Such GTP hydrolysis is not mandatory for microtubule formation, but it appears that only GDP-bound tubulin molecules are able to depolymerize. Thus, a GTP-bound tubulin serves as a cap at the tip of microtubule to protect from depolymerization; and, once the GTP is hydrolyzed, the microtubule begins to depolymerize and shrink rapidly.[3]

Mitochondrial function

The translocation of proteins into the mitochondrial matrix involves the interactions of both GTP and ATP. The importing of these proteins plays an important role in several pathways regulated within the mitochondria organelle,[4] such as converting oxaloacetate to phosphoenolpyruvate (PEP) in gluconeogenesis.[citation needed]

Precursor for synthesis of riboflavin

GTP, in combination with ribulose 5-phosphate, are the precursor compounds for the synthesis of riboflavin (vitamin B2).[5]

Biosynthesis

In the cell, GTP is synthesised through many processes including:

See also

References

  1. ^ a b c Berg, JM; JL Tymoczko; L Stryer (2002). Biochemistry (5th ed.). WH Freeman and Company. pp. 476. ISBN 0-7167-4684-0.
  2. ^ Solomon, EP; LR Berg; DW Martin (2005). Biology (7th ed.). pp. 244–245.
  3. ^ Gwen V. Childs. "Microtubule structure". cytochemistry.net. Archived from the original on 2010-02-15.
  4. ^ Sepuri, Naresh Babu V.; Norbert Schülke; Debkumar Pain (16 January 1998). "GTP Hydrolysis Is Essential for Protein Import into the Mitochondrial Matrix". Journal of Biological Chemistry. 273 (3): 1420–1424. doi:10.1074/jbc.273.3.1420. PMID 9430677.
  5. ^ Merrill AH, McCormick DB (2020). "Riboflavin". In BP Marriott, DF Birt, VA Stallings, AA Yates (eds.). Present Knowledge in Nutrition, Eleventh Edition. London, United Kingdom: Academic Press (Elsevier). pp. 189–208. ISBN 978-0-323-66162-1.