Jump to content

Chlorine-36: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 1055355270 by SM358 (talk) we don't use these oversimplified diagrams much, that's neither how the nuclear nor the electronic structure looks really
m top: archive link repair, may include: archive.* -> archive.today, and http->https for ghostarchive.org and archive.org (wp:el#Specifying_protocols)
Line 34: Line 34:
<sup>36</sup>Cl is produced in the atmosphere by [[spallation]] of <sup>36</sup>[[argon|Ar]] by interactions with [[cosmic ray]] [[proton]]s. In the top meter of the lithosphere, <sup>36</sup>Cl is generated primarily by [[thermal neutron]] activation of <sup>35</sup>Cl and spallation of <sup>39</sup>[[Potassium|K]] and <sup>40</sup>[[Calcium|Ca]].<ref name=Zreda /> In the subsurface environment, [[muon capture]] by <sup>40</sup>[[Calcium|Ca]] becomes more important.<ref name=Zreda /> The production rates are about 4200 atoms <sup>36</sup>Cl/yr/mole <sup>39</sup>K and 3000 atoms <sup>36</sup>Cl/yr/mole <sup>40</sup>Ca, due to spallation in rocks at sea level.<ref name=Zreda />
<sup>36</sup>Cl is produced in the atmosphere by [[spallation]] of <sup>36</sup>[[argon|Ar]] by interactions with [[cosmic ray]] [[proton]]s. In the top meter of the lithosphere, <sup>36</sup>Cl is generated primarily by [[thermal neutron]] activation of <sup>35</sup>Cl and spallation of <sup>39</sup>[[Potassium|K]] and <sup>40</sup>[[Calcium|Ca]].<ref name=Zreda /> In the subsurface environment, [[muon capture]] by <sup>40</sup>[[Calcium|Ca]] becomes more important.<ref name=Zreda /> The production rates are about 4200 atoms <sup>36</sup>Cl/yr/mole <sup>39</sup>K and 3000 atoms <sup>36</sup>Cl/yr/mole <sup>40</sup>Ca, due to spallation in rocks at sea level.<ref name=Zreda />


The half-life of this isotope makes it suitable for [[geologic dating]] in the range of 60,000 to 1 million years.<ref>{{cite web|title=Chlorine|url=http://www.sahra.arizona.edu/programs/isotopes/chlorine.html|work=Isotopes & Hydrology|url-status=dead|archiveurl=https://archive.is/20040327185656/http://www.sahra.arizona.edu/programs/isotopes/chlorine.html|archivedate=2004-03-27}}</ref>
The half-life of this isotope makes it suitable for [[geologic dating]] in the range of 60,000 to 1 million years.<ref>{{cite web|title=Chlorine|url=http://www.sahra.arizona.edu/programs/isotopes/chlorine.html|work=Isotopes & Hydrology|url-status=dead|archiveurl=https://archive.today/20040327185656/http://www.sahra.arizona.edu/programs/isotopes/chlorine.html|archivedate=2004-03-27}}</ref>


Additionally, large amounts of <sup>36</sup>Cl were produced by irradiation of [[seawater]] during atmospheric and [[underwater explosion|underwater]] [[nuclear weapons testing|test detonations]] of [[nuclear weapon]]s between 1952 and 1958. The residence time of <sup>36</sup>Cl in the atmosphere is about 2 years. Thus, as an event marker of 1950s water in [[soil]] and [[ground water]], <sup>36</sup>Cl is also useful for dating waters less than 50&nbsp;years before the present. <sup>36</sup>Cl has seen use in other areas of the geological sciences, including dating ice and sediments.
Additionally, large amounts of <sup>36</sup>Cl were produced by irradiation of [[seawater]] during atmospheric and [[underwater explosion|underwater]] [[nuclear weapons testing|test detonations]] of [[nuclear weapon]]s between 1952 and 1958. The residence time of <sup>36</sup>Cl in the atmosphere is about 2 years. Thus, as an event marker of 1950s water in [[soil]] and [[ground water]], <sup>36</sup>Cl is also useful for dating waters less than 50&nbsp;years before the present. <sup>36</sup>Cl has seen use in other areas of the geological sciences, including dating ice and sediments.

Revision as of 02:05, 4 December 2021

Chlorine-36, 36Cl
General
Symbol36Cl
Nameschlorine-36, 36Cl, Cl-36
Protons (Z)17
Neutrons (N)19
Nuclide data
Natural abundance7 × 10−13
Half-life (t1/2)301,300
Decay products36Ar
Decay modes
Decay modeDecay energy (MeV)
Beta minus710 keV
Electron capture120 keV
Electron capture1142 keV
Isotopes of chlorine
Complete table of nuclides

Chlorine-36 (36Cl) is an isotope of chlorine. Chlorine has two stable isotopes and one naturally occurring radioactive isotope, the cosmogenic isotope 36Cl. Its half-life is 301,300 ± 1,500 years.[1] 36Cl decays primarily (98%) by beta-minus decay to 36Ar, and the balance to 36S.[1]

Trace amounts of radioactive 36Cl exist in the environment, in a ratio of about (7–10) × 10−13 to 1 with stable chlorine isotopes.[2][3] This corresponds to a concentration of approximately 1 Bq/(kg Cl).

36Cl is produced in the atmosphere by spallation of 36Ar by interactions with cosmic ray protons. In the top meter of the lithosphere, 36Cl is generated primarily by thermal neutron activation of 35Cl and spallation of 39K and 40Ca.[2] In the subsurface environment, muon capture by 40Ca becomes more important.[2] The production rates are about 4200 atoms 36Cl/yr/mole 39K and 3000 atoms 36Cl/yr/mole 40Ca, due to spallation in rocks at sea level.[2]

The half-life of this isotope makes it suitable for geologic dating in the range of 60,000 to 1 million years.[4]

Additionally, large amounts of 36Cl were produced by irradiation of seawater during atmospheric and underwater test detonations of nuclear weapons between 1952 and 1958. The residence time of 36Cl in the atmosphere is about 2 years. Thus, as an event marker of 1950s water in soil and ground water, 36Cl is also useful for dating waters less than 50 years before the present. 36Cl has seen use in other areas of the geological sciences, including dating ice and sediments.

See also

References

  1. ^ a b Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  2. ^ a b c d M. Zreda; et al. (1991). "Cosmogenic chlorine-36 production rates in terrestrial rocks". Earth and Planetary Science Letters. 105: 94. Bibcode:1991E&PSL.105...94Z. doi:10.1016/0012-821X(91)90123-Y.
  3. ^ M. Sheppard and M. Herod (2012). "Variation in background concentrations and specific activities of 36Cl, 129I and U/Th-series radionuclides in surface waters". Journal of Environmental Radioactivity. 106: 27–34. doi:10.1016/j.jenvrad.2011.10.015. PMID 22304997.
  4. ^ "Chlorine". Isotopes & Hydrology. Archived from the original on 2004-03-27.