Jump to content

List of logic symbols: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 12: Line 12:
|- bgcolor=#a0e0a0
|- bgcolor=#a0e0a0
! scope="col" |Symbol
! scope="col" |Symbol
!Name
!Read as
!Category
! scope="col" |Explanation
! scope="col" |Examples
! scope="col" |Unicode<br />value<br />(hexadecimal)
! scope="col" |Unicode<br />value<br />(hexadecimal)
! scope="col" |HTML<br />value<br />(decimal)
! scope="col" |HTML<br />value<br />(decimal)
! scope="col" |HTML<br />entity<br />(named)
! scope="col" |HTML<br />entity<br />(named)
! scope="col" |[[LaTeX]]<br />symbol
! scope="col" |[[LaTeX]]<br />symbol
!Logic Name
!Read as
!Category
! scope="col" |Explanation
! scope="col" |Examples
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">⇒<br />→<br />⊃</div>
! scope"row" align="center" |<div style="font-size:200%;">⇒<br />→<br />⊃</div>
| style="text-align:left;font-family:monospace" |U+21D2<br /><br />U+2192<br /><br />U+2283
| style="text-align:left;font-family:monospace" |&amp;#8658;<br /><br />&amp;#8594;<br /><br />&amp;#8835;
| style="text-align:left;font-family:monospace" |&amp;rArr;<br /><br />&amp;rarr;<br /><br />&amp;sup;
| style="text-align:left;font-family:monospace" |<div><math>\Rightarrow</math>\Rightarrow<br /><math>\to</math>\to or \rightarrow<br /><math>\supset</math>\supset<br /><math>\implies</math>\implies</div>
||[[material conditional|material implication]]
||[[material conditional|material implication]]
|implies; if ... then
|implies; if ... then
Line 28: Line 32:
|<math>A \Rightarrow B</math> is false when {{mvar|A}} is true and {{mvar|B}} is false but true otherwise.<ref>{{Cite web | url=https://en.wikipedia.org/wiki/Material_conditional |title = Material conditional}}</ref>{{Circular reference|date=May 2020}}<br /><br /><math>\rightarrow</math> may mean the same as <math>\Rightarrow</math> (the symbol may also indicate the domain and codomain of a [[function (mathematics)|function]]; see [[table of mathematical symbols]]).<br /><br /><math>\supset</math> may mean the same as <math>\Rightarrow</math> (the symbol may also mean [[superset]]).
|<math>A \Rightarrow B</math> is false when {{mvar|A}} is true and {{mvar|B}} is false but true otherwise.<ref>{{Cite web | url=https://en.wikipedia.org/wiki/Material_conditional |title = Material conditional}}</ref>{{Circular reference|date=May 2020}}<br /><br /><math>\rightarrow</math> may mean the same as <math>\Rightarrow</math> (the symbol may also indicate the domain and codomain of a [[function (mathematics)|function]]; see [[table of mathematical symbols]]).<br /><br /><math>\supset</math> may mean the same as <math>\Rightarrow</math> (the symbol may also mean [[superset]]).
|<math>x = 2 \Rightarrow x^2 = 4</math> is true, but <math>x^2 = 4 \Rightarrow x = 2</math> is in general false (since {{mvar|x}} could be −2).
|<math>x = 2 \Rightarrow x^2 = 4</math> is true, but <math>x^2 = 4 \Rightarrow x = 2</math> is in general false (since {{mvar|x}} could be −2).
| style="text-align:left;font-family:monospace" |U+21D2<br /><br />U+2192<br /><br />U+2283
| style="text-align:left;font-family:monospace" |&amp;#8658;<br /><br />&amp;#8594;<br /><br />&amp;#8835;
| style="text-align:left;font-family:monospace" |&amp;rArr;<br /><br />&amp;rarr;<br /><br />&amp;sup;
| style="text-align:left;font-family:monospace" |<div><math>\Rightarrow</math>\Rightarrow<br /><math>\to</math>\to or \rightarrow<br /><math>\supset</math>\supset<br /><math>\implies</math>\implies</div>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">⇔<br />≡<br />⟷</div>
! scope"row" align="center" |<div style="font-size:200%;">⇔<br />≡<br />⟷</div>
| style="text-align:left;font-family:monospace" |U+21D4<br /><br />U+2261<br /><br />U+27F7
| style="text-align:left;font-family:monospace" |&amp;#8660;<br /><br />&amp;#8801;<br /><br />&amp;#10231;
| style="text-align:left;font-family:monospace" |&amp;hArr;<br /><br />&amp;equiv;<br /><br />&amp;#10231;
| style="text-align:left;font-family:monospace" |<math>\Leftrightarrow</math>\Leftrightarrow<br /><math>\equiv</math>\equiv<br /><math>\leftrightarrow</math>\leftrightarrow<br /><math>\iff</math>\iff
||[[material equivalence]]
||[[material equivalence]]
|if and only if; iff; means the same as
|if and only if; iff; means the same as
Line 39: Line 43:
|<math>A \Leftrightarrow B</math> is true only if both {{mvar|A}} and {{mvar|B}} are false, or both {{mvar|A}} and {{mvar|B}} are true.
|<math>A \Leftrightarrow B</math> is true only if both {{mvar|A}} and {{mvar|B}} are false, or both {{mvar|A}} and {{mvar|B}} are true.
|<math>x + 5 = y + 2 \Leftrightarrow x + 3 = y</math>
|<math>x + 5 = y + 2 \Leftrightarrow x + 3 = y</math>
| style="text-align:left;font-family:monospace" |U+21D4<br /><br />U+2261<br /><br />U+27F7
| style="text-align:left;font-family:monospace" |&amp;#8660;<br /><br />&amp;#8801;<br /><br />&amp;#10231;
| style="text-align:left;font-family:monospace" |&amp;hArr;<br /><br />&amp;equiv;<br /><br />&amp;#10231;
| style="text-align:left;font-family:monospace" |<math>\Leftrightarrow</math>\Leftrightarrow<br /><math>\equiv</math>\equiv<br /><math>\leftrightarrow</math>\leftrightarrow<br /><math>\iff</math>\iff
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">¬<br />˜<br />!</div>
! scope"row" align="center" |<div style="font-size:200%;">¬<br />˜<br />!</div>
||[[negation]]
|not
|[[propositional logic]]
|The statement <math>\lnot A</math> is true if and only if {{mvar|A}} is false.<br /><br />A slash placed through another operator is the same as <math>\neg</math> placed in front.
|<math>\neg (\neg A) \Leftrightarrow A</math><br /> <math>x \neq y \Leftrightarrow \neg (x = y)</math>
| style="text-align:left;font-family:monospace" |U+00AC<br /><br />U+02DC<br /><br />U+0021
| style="text-align:left;font-family:monospace" |U+00AC<br /><br />U+02DC<br /><br />U+0021
| style="text-align:left;font-family:monospace" |&amp;#172;<br /><br />&amp;#732;<br /><br />&amp;#33;
| style="text-align:left;font-family:monospace" |&amp;#172;<br /><br />&amp;#732;<br /><br />&amp;#33;
Line 56: Line 51:


<br /><math>\sim</math>\sim
<br /><math>\sim</math>\sim





</div>
</div>
||[[negation]]
|not
|[[propositional logic]]
|The statement <math>\lnot A</math> is true if and only if {{mvar|A}} is false.<br /><br />A slash placed through another operator is the same as <math>\neg</math> placed in front.
|<math>\neg (\neg A) \Leftrightarrow A</math><br /> <math>x \neq y \Leftrightarrow \neg (x = y)</math>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;"><math>\mathbb{D}</math></div>
! scope"row" align="center" |<div style="font-size:200%;"><math>\mathbb{D}</math></div>
| style="text-align:left;font-family:monospace" |U+1D53B
| style="text-align:left;font-family:monospace" |&amp;#120123;
| style="text-align:left;font-family:monospace" |&amp;Dopf;
| style="text-align:left;font-family:monospace" |\mathbb{D}
||[[Domain of discourse]]
||[[Domain of discourse]]
|Domain of predicate
|Domain of predicate
Line 67: Line 70:
|
|
| <math>\mathbb D\mathbb :\mathbb R</math>
| <math>\mathbb D\mathbb :\mathbb R</math>
| style="text-align:left;font-family:monospace" |U+1D53B
| style="text-align:left;font-family:monospace" |&amp;#120123;
| style="text-align:left;font-family:monospace" |&amp;Dopf;
| style="text-align:left;font-family:monospace" |\mathbb{D}
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">∧<br/>·<br/>&</div>
! scope"row" align="center" |<div style="font-size:200%;">∧<br/>·<br/>&</div>
| style="text-align:left;font-family:monospace" |U+2227<br /><br />U+00B7<br /><br />U+0026
| style="text-align:left;font-family:monospace" |&amp;#8743;<br /><br />&amp;#183;<br /><br />&amp;#38;<br />
| style="text-align:left;font-family:monospace" |&amp;and;<br /><br />&amp;middot;<br /><br />&amp;amp;
| style="text-align:left;font-family:monospace" |<div><math>\wedge</math>\wedge or \land<br /><math>\cdot</math>\cdot
<math>\&</math>\&<ref>Although this character is available in LaTeX, the [[MediaWiki]] TeX system does not support it.</ref></div>
||[[logical conjunction]]
||[[logical conjunction]]
|and
|and
Line 78: Line 82:
|The statement ''A'' ∧ ''B'' is true if ''A'' and ''B'' are both true; otherwise, it is false.
|The statement ''A'' ∧ ''B'' is true if ''A'' and ''B'' are both true; otherwise, it is false.
|{{math|''n''&nbsp;< 4&nbsp;&nbsp;∧&nbsp;}} {{math|''n''&nbsp;>2&nbsp;&nbsp;⇔&nbsp;}} {{math|1=''n''&nbsp;= 3}} when ''n'' is a [[natural number]].
|{{math|''n''&nbsp;< 4&nbsp;&nbsp;∧&nbsp;}} {{math|''n''&nbsp;>2&nbsp;&nbsp;⇔&nbsp;}} {{math|1=''n''&nbsp;= 3}} when ''n'' is a [[natural number]].
| style="text-align:left;font-family:monospace" |U+2227<br /><br />U+00B7<br /><br />U+0026
| style="text-align:left;font-family:monospace" |&amp;#8743;<br /><br />&amp;#183;<br /><br />&amp;#38;<br />
| style="text-align:left;font-family:monospace" |&amp;and;<br /><br />&amp;middot;<br /><br />&amp;amp;
| style="text-align:left;font-family:monospace" |<div><math>\wedge</math>\wedge or \land<br /><math>\cdot</math>\cdot
<math>\&</math>\&<ref>Although this character is available in LaTeX, the [[MediaWiki]] TeX system does not support it.</ref></div>
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">∨<br />+<br />∥</div>
! scope"row" align="center" |<div style="font-size:200%;">∨<br />+<br />∥</div>
||[[logical disjunction|logical (inclusive) disjunction]]
|or
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]]
|The statement ''A'' ∨ ''B'' is true if ''A'' or ''B'' (or both) are true; if both are false, the statement is false.
|{{math|''n''&nbsp;≥ 4&nbsp;&nbsp;∨&nbsp; ''n''&nbsp;≤ 2&nbsp;&nbsp;⇔ ''n''&nbsp;≠ 3}} when ''n'' is a [[natural number]].
| style="text-align:left;font-family:monospace" |U+2228<br /><br />U+002B<br /><br />U+2225
| style="text-align:left;font-family:monospace" |U+2228<br /><br />U+002B<br /><br />U+2225
| style="text-align:left;font-family:monospace" |&amp;#8744;<br /><br />&amp;#43;<br /><br />&amp;#8741;
| style="text-align:left;font-family:monospace" |&amp;#8744;<br /><br />&amp;#43;<br /><br />&amp;#8741;
Line 102: Line 96:


<br /><math>\parallel</math>\parallel
<br /><math>\parallel</math>\parallel
||[[logical disjunction|logical (inclusive) disjunction]]
|or
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]]
|The statement ''A'' ∨ ''B'' is true if ''A'' or ''B'' (or both) are true; if both are false, the statement is false.
|{{math|''n''&nbsp;≥ 4&nbsp;&nbsp;∨&nbsp; ''n''&nbsp;≤ 2&nbsp;&nbsp;⇔ ''n''&nbsp;≠ 3}} when ''n'' is a [[natural number]].
|-
|-
! scope"row" align="center" |<br /><div style="font-size:200%;">↮<br />⊕<br />⊻<br />≢</div>
! scope"row" align="center" |<br /><div style="font-size:200%;">↮<br />⊕<br />⊻<br />≢</div>
| [[exclusive or|exclusive disjunction]]
|xor; either ... or
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]]
| The statement ''A'' ↮ ''B'' is true when either A or B, but not both, are true. ''A'' ⊻ ''B'' means the same.
| (¬''A'') ↮ ''A'' is always true, and ''A'' ↮ ''A'' always false, if [[vacuous truth]] is excluded.
| style="text-align:left;font-family:monospace" |U+21AE<br /><br />U+2295<br /><br />U+22BB
| style="text-align:left;font-family:monospace" |U+21AE<br /><br />U+2295<br /><br />U+22BB


Line 126: Line 120:


<math>\not\equiv</math>\not\equiv
<math>\not\equiv</math>\not\equiv
| [[exclusive or|exclusive disjunction]]
|xor; either ... or
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]]
| The statement ''A'' ↮ ''B'' is true when either A or B, but not both, are true. ''A'' ⊻ ''B'' means the same.
| (¬''A'') ↮ ''A'' is always true, and ''A'' ↮ ''A'' always false, if [[vacuous truth]] is excluded.
|-
|-
! scope"row" align="center" |<br /><div style="font-size:200%;">⊤<br />T<br />1<br />■</div>
! scope"row" align="center" |<br /><div style="font-size:200%;">⊤<br />T<br />1<br />■</div>
|[[Tautology (logic)|Tautology]]
|top, truth, full clause
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]], [[first-order logic]]
| The statement {{math|⊤}} is unconditionally true.
|⊤(''A'') ⇒ ''A'' is always true.
| style="text-align:left;font-family:monospace" |U+22A4<br /><br />U+25A0<br /><br />
| style="text-align:left;font-family:monospace" |U+22A4<br /><br />U+25A0<br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8868;<br /><br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8868;<br /><br /><br />
| style="text-align:left;font-family:monospace" |&amp;top;
| style="text-align:left;font-family:monospace" |&amp;top;



| style="text-align:left;font-family:monospace" |<math>\top</math>\top
| style="text-align:left;font-family:monospace" |<math>\top</math>\top
|[[Tautology (logic)|Tautology]]
|top, truth, full clause
|[[propositional logic]], [[Boolean algebra (logic)|Boolean algebra]], [[first-order logic]]
| The statement {{math|⊤}} is unconditionally true.
|⊤(''A'') ⇒ ''A'' is always true.
|-
|-
|-
|-
! scope"row" align="center" |<br/><div style="font-size:200%;">⊥<br/>F<br/>0<br/>□</div>
! scope"row" align="center" |<br/><div style="font-size:200%;">⊥<br/>F<br/>0<br/>□</div>
| style="text-align:left;font-family:monospace" |U+22A5<br /><br />U+25A1<br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8869;<br /><br /><br /><br />
| style="text-align:left;font-family:monospace" |&amp;perp;<br /><br /><br /><br />
| style="text-align:left;font-family:monospace" |<math>\bot</math>\bot
|[[Contradiction]]
|[[Contradiction]]
|bottom, falsum, falsity, empty clause
|bottom, falsum, falsity, empty clause
Line 147: Line 149:
| The statement ⊥ is unconditionally false. (The symbol ⊥ may also refer to [[perpendicular]] lines.)
| The statement ⊥ is unconditionally false. (The symbol ⊥ may also refer to [[perpendicular]] lines.)
| ⊥(''A'') ⇒ ''A'' is always false.
| ⊥(''A'') ⇒ ''A'' is always false.
| style="text-align:left;font-family:monospace" |U+22A5<br /><br />U+25A1<br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8869;<br /><br /><br /><br />
| style="text-align:left;font-family:monospace" |&amp;perp;<br /><br /><br /><br />
| style="text-align:left;font-family:monospace" |<math>\bot</math>\bot
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">∀<br />()</div>
! scope"row" align="center" |<div style="font-size:200%;">∀<br />()</div>
| style="text-align:left;font-family:monospace" |U+2200<br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8704;<br /><br />
| style="text-align:left;font-family:monospace" |&amp;forall;<br /><br />
| style="text-align:left;font-family:monospace" |<math>\forall</math>\forall
||[[universal quantification]]
||[[universal quantification]]
|for all; for any; for each
|for all; for any; for each
Line 158: Line 160:
|{{math|∀&nbsp;''x'':&nbsp;''P''(''x'')}} or {{math|(''x'')&nbsp;''P''(''x'')}} means ''P''(''x'') is true for all ''x''.
|{{math|∀&nbsp;''x'':&nbsp;''P''(''x'')}} or {{math|(''x'')&nbsp;''P''(''x'')}} means ''P''(''x'') is true for all ''x''.
|<math>\forall n \isin \mathbb{N}: n^2 \geq n.</math>
|<math>\forall n \isin \mathbb{N}: n^2 \geq n.</math>
| style="text-align:left;font-family:monospace" |U+2200<br /><br />
| style="text-align:left;font-family:monospace" |&amp;#8704;<br /><br />
| style="text-align:left;font-family:monospace" |&amp;forall;<br /><br />
| style="text-align:left;font-family:monospace" |<math>\forall</math>\forall
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">∃</div>
! scope"row" align="center" |<div style="font-size:200%;">∃</div>
| style="text-align:left;font-family:monospace" |U+2203
| style="text-align:left;font-family:monospace" |&amp;#8707;
| style="text-align:left;font-family:monospace" |&amp;exist;
| style="text-align:left;font-family:monospace" |<math>\exists</math>\exists
||[[existential quantification]]
||[[existential quantification]]
|there exists
|there exists
Line 169: Line 171:
|{{math|∃&nbsp;''x'': ''P''(''x'')}} means there is at least one ''x'' such that ''P''(''x'') is true.
|{{math|∃&nbsp;''x'': ''P''(''x'')}} means there is at least one ''x'' such that ''P''(''x'') is true.
|<math>\exists n \isin \mathbb{N}:</math> ''n'' is even.
|<math>\exists n \isin \mathbb{N}:</math> ''n'' is even.
| style="text-align:left;font-family:monospace" |U+2203
| style="text-align:left;font-family:monospace" |&amp;#8707;
| style="text-align:left;font-family:monospace" |&amp;exist;
| style="text-align:left;font-family:monospace" |<math>\exists</math>\exists
|-
|-
! scope"row" align="center" |<div style="font-size:200%;" class="texhtml">∃!</div>
! scope"row" align="center" |<div style="font-size:200%;" class="texhtml">∃!</div>
| style="text-align:left;font-family:monospace" |U+2203&nbsp;U+0021
| style="text-align:left;font-family:monospace" |&amp;#8707; &amp;#33;
| style="text-align:left;font-family:monospace" |&amp;exist;!
| style="text-align:left;font-family:monospace" |<math>\exists !</math>\exists !
||[[uniqueness quantification]]
||[[uniqueness quantification]]
|there exists exactly one
|there exists exactly one
Line 180: Line 182:
|{{math|∃!&nbsp;''x'': ''P''(''x'')}} means there is exactly one ''x'' such that ''P''(''x'') is true.
|{{math|∃!&nbsp;''x'': ''P''(''x'')}} means there is exactly one ''x'' such that ''P''(''x'') is true.
|<math>\exists! n \isin \mathbb{N}: n+5=2n.</math>
|<math>\exists! n \isin \mathbb{N}: n+5=2n.</math>
| style="text-align:left;font-family:monospace" |U+2203&nbsp;U+0021
| style="text-align:left;font-family:monospace" |&amp;#8707; &amp;#33;
| style="text-align:left;font-family:monospace" |&amp;exist;!
| style="text-align:left;font-family:monospace" |<math>\exists !</math>\exists !
|-
|-
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">≔<br/>≡<br/>:⇔</div>
! scope"row" align="center" |<div style="font-size:200%;">≔<br/>≡<br/>:⇔</div>
||[[definition]]
|is defined as
|everywhere
|{{math|1=''x''&nbsp;≔ ''y''}} or {{math|''x''&nbsp;≡ ''y''}} means ''x'' is defined to be another name for ''y'' (but note that ≡ can also mean other things, such as [[congruence relation|congruence]]).<br /><br />{{math|''P''&nbsp;:⇔ ''Q''}} means ''P'' is defined to be [[Logical equivalence|logically equivalent]] to ''Q''.
|<math>\cosh x := \frac {e^x + e^{-x}} {2}</math><br /><br />{{math|''A''&nbsp;XOR&nbsp;''B'' :⇔ (''A''&nbsp;∨&nbsp;''B'')&nbsp;∧&nbsp;¬(''A''&nbsp;∧&nbsp;''B'')}}
| style="text-align:left;font-family:monospace" |U+2254 (U+003A&nbsp;U+003D)<br /><br />U+2261<br /><br />U+003A&nbsp;U+229C
| style="text-align:left;font-family:monospace" |U+2254 (U+003A&nbsp;U+003D)<br /><br />U+2261<br /><br />U+003A&nbsp;U+229C
| style="text-align:left;font-family:monospace" |&amp;#8788; (&amp;#58; &amp;#61;)
| style="text-align:left;font-family:monospace" |&amp;#8788; (&amp;#58; &amp;#61;)
Line 204: Line 197:
<math>:\Leftrightarrow</math>:\Leftrightarrow
<math>:\Leftrightarrow</math>:\Leftrightarrow
</div>
</div>
||[[definition]]
|is defined as
|everywhere
|{{math|1=''x''&nbsp;≔ ''y''}} or {{math|''x''&nbsp;≡ ''y''}} means ''x'' is defined to be another name for ''y'' (but note that ≡ can also mean other things, such as [[congruence relation|congruence]]).<br /><br />{{math|''P''&nbsp;:⇔ ''Q''}} means ''P'' is defined to be [[Logical equivalence|logically equivalent]] to ''Q''.
|<math>\cosh x := \frac {e^x + e^{-x}} {2}</math><br /><br />{{math|''A''&nbsp;XOR&nbsp;''B'' :⇔ (''A''&nbsp;∨&nbsp;''B'')&nbsp;∧&nbsp;¬(''A''&nbsp;∧&nbsp;''B'')}}
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">( )</div>
! scope"row" align="center" |<div style="font-size:200%;">( )</div>
|[[precedence grouping]]
|parentheses; brackets
|everywhere
| Perform the operations inside the parentheses first.
|{{math|1=(8 ÷ 4) ÷ 2&nbsp;= 2 ÷ 2&nbsp;= 1}}, but {{math|1=8 ÷ (4 ÷ 2)&nbsp;= 8 ÷ 2&nbsp;= 4}}.
| style="text-align:left;font-family:monospace" | U+0028&nbsp;U+0029
| style="text-align:left;font-family:monospace" | U+0028&nbsp;U+0029
| style="text-align:left;font-family:monospace" |&amp;#40; &amp;#41;
| style="text-align:left;font-family:monospace" |&amp;#40; &amp;#41;
Line 217: Line 210:
&amp;rpar;
&amp;rpar;
| style="text-align:left;font-family:monospace" |<math>(~)</math> ( )
| style="text-align:left;font-family:monospace" |<math>(~)</math> ( )
|[[precedence grouping]]
|parentheses; brackets
|everywhere
| Perform the operations inside the parentheses first.
|{{math|1=(8 ÷ 4) ÷ 2&nbsp;= 2 ÷ 2&nbsp;= 1}}, but {{math|1=8 ÷ (4 ÷ 2)&nbsp;= 8 ÷ 2&nbsp;= 4}}.
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">⊢</div>
! scope"row" align="center" |<div style="font-size:200%;">⊢</div>
| style="text-align:left;font-family:monospace" |U+22A2
| style="text-align:left;font-family:monospace" |&amp;#8866;
| style="text-align:left;font-family:monospace" |&amp;vdash;
| style="text-align:left;font-family:monospace" |<math>\vdash</math>\vdash
||[[Turnstile (symbol)|turnstile]]
||[[Turnstile (symbol)|turnstile]]
|[[Logical consequence|proves]]
|[[Logical consequence|proves]]
Line 224: Line 226:
|''x'' ⊢ ''y'' means ''x'' proves (syntactically entails) ''y''
|''x'' ⊢ ''y'' means ''x'' proves (syntactically entails) ''y''
| (''A'' → ''B'') ⊢ (¬''B'' → ¬''A'')
| (''A'' → ''B'') ⊢ (¬''B'' → ¬''A'')
| style="text-align:left;font-family:monospace" |U+22A2
| style="text-align:left;font-family:monospace" |&amp;#8866;
| style="text-align:left;font-family:monospace" |&amp;vdash;
| style="text-align:left;font-family:monospace" |<math>\vdash</math>\vdash
|-
|-
! scope"row" align="center" | <div style="font-size:200%;">⊨</div>
! scope"row" align="center" | <div style="font-size:200%;">⊨</div>
| style="text-align:left;font-family:monospace" |U+22A8
| style="text-align:left;font-family:monospace" |&amp;#8872;
| style="text-align:left;font-family:monospace" |&amp;vDash;
| style="text-align:left;font-family:monospace" |<math>\vDash</math>\vDash, \models
||[[double turnstile]]
||[[double turnstile]]
|[[Logical consequence|models]]
|[[Logical consequence|models]]
Line 235: Line 237:
|''x'' ⊨ ''y'' means ''x'' models (semantically entails) ''y''
|''x'' ⊨ ''y'' means ''x'' models (semantically entails) ''y''
| (''A'' → ''B'') ⊨ (¬''B'' → ¬''A'')
| (''A'' → ''B'') ⊨ (¬''B'' → ¬''A'')
| style="text-align:left;font-family:monospace" |U+22A8
| style="text-align:left;font-family:monospace" |&amp;#8872;
| style="text-align:left;font-family:monospace" |&amp;vDash;
| style="text-align:left;font-family:monospace" |<math>\vDash</math>\vDash, \models
|-
|-
|}
|}
Line 248: Line 246:
|- bgcolor="#a0e0a0"
|- bgcolor="#a0e0a0"
! scope="col" |Symbol
! scope="col" |Symbol
! scope="col" |Name
! scope="col" |Read as
! scope="col" |Category
! scope="col" |Explanation
!Examples
!Unicode<br />value<br />(hexadecimal)
!Unicode<br />value<br />(hexadecimal)
!HTML<br />value<br />(decimal)
!HTML<br />value<br />(decimal)
! scope="col" |HTML<br />entity<br />(named)
! scope="col" |HTML<br />entity<br />(named)
! scope="col" |[[LaTeX]]<br />symbol
! scope="col" |[[LaTeX]]<br />symbol
! scope="col" |Logic Name
! scope="col" |Read as
! scope="col" |Category
! scope="col" |Explanation
!Examples
|-
|-
! scope"row" align="center" |<div style="font-size:200%;">̅</div>
! scope"row" align="center" |<div style="font-size:200%;">̅</div>
|U+0305
|
|
|
|[[Overline|COMBINING OVERLINE]]
|[[Overline|COMBINING OVERLINE]]
|
|
Line 267: Line 269:
"<span style="text-decoration: overline">A ∨ B</span>" says the Gödel number of "(A ∨ B)".
"<span style="text-decoration: overline">A ∨ B</span>" says the Gödel number of "(A ∨ B)".
"<span style="text-decoration: overline">A ∨ B</span>" is the same as "¬(A ∨ B)".
"<span style="text-decoration: overline">A ∨ B</span>" is the same as "¬(A ∨ B)".
|-
|U+0305
! scope"row" align="center" |<div style="font-size:200%;">↑<br><nowiki>|</nowiki></div>
|U+2191<br>U+007C
|
|
|
|
|
|
|-
! scope"row" align="center" |<div style="font-size:200%;">↑<br><nowiki>|</nowiki></div>
|UPWARDS ARROW<br>VERTICAL LINE
|UPWARDS ARROW<br>VERTICAL LINE
|
|
Line 278: Line 280:
|[[Sheffer stroke]], the sign for the NAND operator (negation of conjunction).
|[[Sheffer stroke]], the sign for the NAND operator (negation of conjunction).
|
|
|-
|U+2191<br>U+007C
!scope"row" align="center" |<div style="font-size:200%;">↓</div>
|U+2193
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">↓</div>
|DOWNWARDS ARROW
|DOWNWARDS ARROW
|
|
|
|
|[[Peirce arrow|Peirce Arrow]], the sign for the NOR operator (negation of disjunction).
|[[Peirce arrow|Peirce Arrow]], the sign for the NOR operator (negation of disjunction).
|
|U+2193
|
|
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⊙</div>
!scope"row" align="center" |<div style="font-size:200%;">⊙</div>
|U+2299
|
|
|<math>\odot</math>\odot
|CIRCLED DOT OPERATOR
|CIRCLED DOT OPERATOR
|
|
Line 300: Line 302:
|the sign for the XNOR operator (negation of exclusive disjunction).
|the sign for the XNOR operator (negation of exclusive disjunction).
|
|
|U+2299
|
|
|<math>\odot</math>\odot
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">∁</div>
!scope"row" align="center" |<div style="font-size:200%;">∁</div>
|U+2201
|[[Complement (set theory)|COMPLEMENT]]
|
|
|
|
|
|
|[[Complement (set theory)|COMPLEMENT]]
|
|
|U+2201
|
|
|
|
Line 317: Line 315:
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">∄</div>
!scope"row" align="center" |<div style="font-size:200%;">∄</div>
|U+2204
|THERE DOES NOT EXIST
|
|
|
|
|strike out existential quantifier, same as "¬∃"
|
|
|THERE DOES NOT EXIST
|U+2204
|
|
|
|
|strike out existential quantifier, same as "¬∃"
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">∴</div>
!scope"row" align="center" |<div style="font-size:200%;">∴</div>
|U+2234
|
|
|∴\therefore
|[[Therefore sign|THEREFORE]]
|[[Therefore sign|THEREFORE]]
|[[Therefore sign|Therefore]]
|[[Therefore sign|Therefore]]
Line 333: Line 335:
|
|
|
|
|U+2234
|
|
|∴\therefore
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">∵</div>
!scope"row" align="center" |<div style="font-size:200%;">∵</div>
|U+2235
|[[Therefore sign#Related%20signs|BECAUSE]]
|because
|
|
|
|
|
|
|[[Therefore sign#Related%20signs|BECAUSE]]
|U+2235
|because
|
|
|
|
Line 350: Line 348:
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⊧</div>
!scope"row" align="center" |<div style="font-size:200%;">⊧</div>
|U+22A7
|MODELS
|
|
|
|
|is a [[Model (logic)|model]] of (or "is a [[Valuation (logic)|valuation]] satisfying")
|
|
|MODELS
|U+22A7
|
|
|
|
|is a [[Model (logic)|model]] of (or "is a [[Valuation (logic)|valuation]] satisfying")
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⊨</div>
!scope"row" align="center" |<div style="font-size:200%;">⊨</div>
|U+22A8
|
|
|
|TRUE
|TRUE
|is true of
|is true of
Line 366: Line 368:
|
|
|
|
|-
|U+22A8
!scope"row" align="center" |<div style="font-size:200%;">⊬</div>
|U+22AC
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⊬</div>
|DOES NOT PROVE
|DOES NOT PROVE
|
|
Line 377: Line 379:
|negated ⊢, the sign for "does not prove"
|negated ⊢, the sign for "does not prove"
|''T'' ⊬ ''P'' says "''P'' is not a theorem of ''T''"
|''T'' ⊬ ''P'' says "''P'' is not a theorem of ''T''"
|-
|U+22AC
!scope"row" align="center" |<div style="font-size:200%;">⊭</div>
|U+22AD
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⊭</div>
|NOT TRUE
|NOT TRUE
|is not true of
|is not true of
Line 388: Line 390:
|
|
|
|
|-
|U+22AD
!scope"row" align="center" |<div style="font-size:200%;">†</div>
|U+2020
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">†</div>
|DAGGER
|DAGGER
|it is true that ...
|it is true that ...
Line 399: Line 401:
|Affirmation operator
|Affirmation operator
|
|
|-
|U+2020
!scope"row" align="center" |<div style="font-size:200%;">⊼</div>
|U+22BC
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⊼</div>
|NAND
|NAND
|
|
Line 410: Line 412:
|NAND operator
|NAND operator
|
|
|-
|U+22BC
!scope"row" align="center" |<div style="font-size:200%;">⊽</div>
|U+22BD
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⊽</div>
|NOR
|NOR
|
|
Line 421: Line 423:
|NOR operator
|NOR operator
|
|
|-
|U+22BD
!scope"row" align="center" |<div style="font-size:200%;">◇</div>
|U+25C7
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">◇</div>
|WHITE DIAMOND
|WHITE DIAMOND
|
|
Line 432: Line 434:
|modal operator for "it is possible that", "it is not necessarily not" or rarely "it is not probably not" (in most modal logics it is defined as "¬◻¬")
|modal operator for "it is possible that", "it is not necessarily not" or rarely "it is not probably not" (in most modal logics it is defined as "¬◻¬")
|
|
|-
|U+25C7
!scope"row" align="center" |<div style="font-size:200%;">⋆</div>
|U+22C6
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⋆</div>
|STAR OPERATOR
|STAR OPERATOR
|
|
Line 443: Line 445:
|usually used for ad-hoc operators
|usually used for ad-hoc operators
|
|
|-
|U+22C6
!scope"row" align="center" |<div style="font-size:200%;">⊥<br>↓</div>
|U+22A5<br>U+2193
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⊥<br>↓</div>
|[[Up tack|UP TACK]]<br>DOWNWARDS ARROW
|[[Up tack|UP TACK]]<br>DOWNWARDS ARROW
|
|
|
|
|Webb-operator or Peirce arrow, the sign for [[Logical NOR|NOR]]. Confusingly, "⊥" is also the sign for contradiction or absurdity.
|Webb-operator or Peirce arrow, the sign for [[Logical NOR|NOR]]. Confusingly, "⊥" is also the sign for contradiction or absurdity.
|
|U+22A5<br>U+2193
|
|
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⌐</div>
!scope"row" align="center" |<div style="font-size:200%;">⌐</div>
|U+2310
|REVERSED NOT SIGN
|
|
|
|
|
|
|REVERSED NOT SIGN
|
|
|U+2310
|
|
|
|
Line 471: Line 469:
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⌜<br>⌝</div>
!scope"row" align="center" |<div style="font-size:200%;">⌜<br>⌝</div>
|TOP LEFT CORNER<br>TOP RIGHT CORNER
|
|
|corner quotes, also called "Quine quotes"; for quasi-quotation, i.e. quoting specific context of unspecified ("variable") expressions;<ref>[[Willard Van Orman Quine|Quine, W.V.]] (1981): ''Mathematical Logic'', §6</ref> also used for denoting [[Gödel number]];<ref>{{citation|last=Hintikka|first=Jaakko|title=The Principles of Mathematics Revisited|url=https://books.google.com/books?id=JHBnE0EQ6VgC&pg=PA113|page=113|year=1998|publisher=Cambridge University Press|isbn=9780521624985}}.</ref> for example "⌜G⌝" denotes the Gödel number of G. (Typographical note: although the quotes appears as a "pair" in unicode (231C and 231D), they are not symmetrical in some fonts. And in some fonts (for example Arial) they are only symmetrical in certain sizes. Alternatively the quotes can be rendered as ⌈ and ⌉ (U+2308 and U+2309) or by using a negation symbol and a reversed negation symbol ⌐ ¬ in superscript mode. )
|
|U+231C<br>U+231D
|U+231C<br>U+231D
|
|
Line 481: Line 474:
|\ulcorner
|\ulcorner
\urcorner
\urcorner
|TOP LEFT CORNER<br>TOP RIGHT CORNER
|
|
|corner quotes, also called "Quine quotes"; for quasi-quotation, i.e. quoting specific context of unspecified ("variable") expressions;<ref>[[Willard Van Orman Quine|Quine, W.V.]] (1981): ''Mathematical Logic'', §6</ref> also used for denoting [[Gödel number]];<ref>{{citation|last=Hintikka|first=Jaakko|title=The Principles of Mathematics Revisited|url=https://books.google.com/books?id=JHBnE0EQ6VgC&pg=PA113|page=113|year=1998|publisher=Cambridge University Press|isbn=9780521624985}}.</ref> for example "⌜G⌝" denotes the Gödel number of G. (Typographical note: although the quotes appears as a "pair" in unicode (231C and 231D), they are not symmetrical in some fonts. And in some fonts (for example Arial) they are only symmetrical in certain sizes. Alternatively the quotes can be rendered as ⌈ and ⌉ (U+2308 and U+2309) or by using a negation symbol and a reversed negation symbol ⌐ ¬ in superscript mode. )
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">◻<br>□</div>
!scope"row" align="center" |<div style="font-size:200%;">◻<br>□</div>
|U+25FB<br>U+25A1
|WHITE MEDIUM SQUARE<br>WHITE SQUARE
|
|
|
|
|modal operator for "it is necessary that" (in [[modal logic]]), or "it is provable that" (in [[provability logic]]), or "it is obligatory that" (in [[deontic logic]]), or "it is believed that" (in [[doxastic logic]]); also as [[Clause (logic)#Empty clauses|empty clause]] (alternatives: <math>\empty</math> and ⊥)
|
|
|WHITE MEDIUM SQUARE<br>WHITE SQUARE
|U+25FB<br>U+25A1
|
|
|
|
|modal operator for "it is necessary that" (in [[modal logic]]), or "it is provable that" (in [[provability logic]]), or "it is obligatory that" (in [[deontic logic]]), or "it is believed that" (in [[doxastic logic]]); also as [[Clause (logic)#Empty clauses|empty clause]] (alternatives: <math>\empty</math> and ⊥)
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⟛</div>
!scope"row" align="center" |<div style="font-size:200%;">⟛</div>
|U+27DB
|LEFT AND RIGHT TACK
|
|
|semantic equivalent
|
|
|
|
|LEFT AND RIGHT TACK
|U+27DB
|
|
|semantic equivalent
|
|
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⟡</div>
!scope"row" align="center" |<div style="font-size:200%;">⟡</div>
|U+27E1
|
|
|
|WHITE CONCAVE-SIDED DIAMOND
|WHITE CONCAVE-SIDED DIAMOND
|never
|never
Line 510: Line 512:
|
|
|
|
|-
|U+27E1
!scope"row" align="center" |<div style="font-size:200%;">⟢</div>
|U+27E2
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟢</div>
|WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK
|WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK
|was never
|was never
Line 521: Line 523:
|
|
|
|
|-
|U+27E2
!scope"row" align="center" |<div style="font-size:200%;">⟣</div>
|U+27E3
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟣</div>
|WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK
|WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK
|will never be
|will never be
Line 532: Line 534:
|
|
|
|
|-
|U+27E3
!scope"row" align="center" |<div style="font-size:200%;">□</div>
|U+25A1
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">□</div>
|WHITE SQUARE
|WHITE SQUARE
|always
|always
Line 543: Line 545:
|
|
|
|
|-
|U+25A1
!scope"row" align="center" |<div style="font-size:200%;">⟤</div>
|U+25A4
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟤</div>
|WHITE SQUARE WITH LEFTWARDS TICK
|WHITE SQUARE WITH LEFTWARDS TICK
|was always
|was always
Line 554: Line 556:
|
|
|
|
|-
|U+25A4
!scope"row" align="center" |<div style="font-size:200%;">⟥</div>
|U+25A5
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⟥</div>
|WHITE SQUARE WITH RIGHTWARDS TIC
|WHITE SQUARE WITH RIGHTWARDS TIC
|will always be
|will always be
Line 565: Line 567:
|
|
|
|
|-
|U+25A5
!scope"row" align="center" |<div style="font-size:200%;">⥽</div>
|U+297D
|
|
|
|
|
|
|-
!scope"row" align="center" |<div style="font-size:200%;">⥽</div>
|RIGHT FISH TAIL
|RIGHT FISH TAIL
|
|
|
|
|sometimes used for "relation", also used for denoting various ad hoc relations (for example, for denoting "witnessing" in the context of [[Rosser's trick]]) The fish hook is also used as strict implication by C.I.Lewis <math> p </math> ⥽ <math> q \equiv \Box(p\rightarrow q)</math>, the corresponding LaTeX macro is \strictif. [https://www.fileformat.info/info/unicode/char/297d/index.htm See here] for an image of glyph. Added to Unicode 3.2.0.
|sometimes used for "relation", also used for denoting various ad hoc relations (for example, for denoting "witnessing" in the context of [[Rosser's trick]]) The fish hook is also used as strict implication by C.I.Lewis <math> p </math> ⥽ <math> q \equiv \Box(p\rightarrow q)</math>, the corresponding LaTeX macro is \strictif. [https://www.fileformat.info/info/unicode/char/297d/index.htm See here] for an image of glyph. Added to Unicode 3.2.0.
|
|U+297D
|
|
|
|
|-
|-
!scope"row" align="center" |<div style="font-size:200%;">⨇</div>
!scope"row" align="center" |<div style="font-size:200%;">⨇</div>
|U+2A07
|TWO LOGICAL AND OPERATOR
|
|
|
|
|
|
|TWO LOGICAL AND OPERATOR
|
|
|U+2A07
|
|
|
|

Revision as of 18:07, 17 February 2022

In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents,[1] and the LaTeX symbol.

Basic logic symbols

Symbol Unicode
value
(hexadecimal)
HTML
value
(decimal)
HTML
entity
(named)
LaTeX
symbol
Logic Name Read as Category Explanation Examples


U+21D2

U+2192

U+2283
&#8658;

&#8594;

&#8835;
&rArr;

&rarr;

&sup;
\Rightarrow
\to or \rightarrow
\supset
\implies
material implication implies; if ... then propositional logic, Heyting algebra is false when A is true and B is false but true otherwise.[2][circular reference]

may mean the same as (the symbol may also indicate the domain and codomain of a function; see table of mathematical symbols).

may mean the same as (the symbol may also mean superset).
is true, but is in general false (since x could be −2).


U+21D4

U+2261

U+27F7
&#8660;

&#8801;

&#10231;
&hArr;

&equiv;

&#10231;
\Leftrightarrow
\equiv
\leftrightarrow
\iff
material equivalence if and only if; iff; means the same as propositional logic is true only if both A and B are false, or both A and B are true.
¬
˜
!
U+00AC

U+02DC

U+0021
&#172;

&#732;

&#33;
&not;

&tilde;

&excl;
\lnot or \neg


\sim


negation not propositional logic The statement is true if and only if A is false.

A slash placed through another operator is the same as placed in front.

U+1D53B &#120123; &Dopf; \mathbb{D} Domain of discourse Domain of predicate Predicate (mathematical logic)

·
&
U+2227

U+00B7

U+0026
&#8743;

&#183;

&#38;
&and;

&middot;

&amp;
\wedge or \land
\cdot \&[3]
logical conjunction and propositional logic, Boolean algebra The statement AB is true if A and B are both true; otherwise, it is false. n < 4  ∧  n >2  ⇔  n = 3 when n is a natural number.

+
U+2228

U+002B

U+2225
&#8744;

&#43;

&#8741;
&or;


&plus;


&parallel;

\lor or \vee



\parallel

logical (inclusive) disjunction or propositional logic, Boolean algebra The statement AB is true if A or B (or both) are true; if both are false, the statement is false. n ≥ 4  ∨  n ≤ 2  ⇔ n ≠ 3 when n is a natural number.




U+21AE

U+2295

U+22BB


U+2262

&#8622;

&#8853;

&#8891;


&#8802;

&oplus;


&veebar;

&nequiv;

\oplus


\veebar


\not\equiv

exclusive disjunction xor; either ... or propositional logic, Boolean algebra The statement AB is true when either A or B, but not both, are true. AB means the same. A) ↮ A is always true, and AA always false, if vacuous truth is excluded.


T
1
U+22A4

U+25A0

&#8868;


&top; \top Tautology top, truth, full clause propositional logic, Boolean algebra, first-order logic The statement is unconditionally true. ⊤(A) ⇒ A is always true.


F
0
U+22A5

U+25A1

&#8869;



&perp;



\bot Contradiction bottom, falsum, falsity, empty clause propositional logic, Boolean algebra, first-order logic The statement ⊥ is unconditionally false. (The symbol ⊥ may also refer to perpendicular lines.) ⊥(A) ⇒ A is always false.

()
U+2200

&#8704;

&forall;

\forall universal quantification for all; for any; for each first-order logic ∀ xP(x) or (xP(x) means P(x) is true for all x.
U+2203 &#8707; &exist; \exists existential quantification there exists first-order logic ∃ x: P(x) means there is at least one x such that P(x) is true. n is even.
∃!
U+2203 U+0021 &#8707; &#33; &exist;! \exists ! uniqueness quantification there exists exactly one first-order logic ∃! x: P(x) means there is exactly one x such that P(x) is true.


:⇔
U+2254 (U+003A U+003D)

U+2261

U+003A U+229C
&#8788; (&#58; &#61;)


&#8801;

&#8860;

&coloneq;


&equiv;

&hArr;

:=


\equiv

:\Leftrightarrow

definition is defined as everywhere x ≔ y or x ≡ y means x is defined to be another name for y (but note that ≡ can also mean other things, such as congruence).

P :⇔ Q means P is defined to be logically equivalent to Q.


A XOR B :⇔ (A ∨ B) ∧ ¬(A ∧ B)
( )
U+0028 U+0029 &#40; &#41; &lpar;

&rpar;

( ) precedence grouping parentheses; brackets everywhere Perform the operations inside the parentheses first. (8 ÷ 4) ÷ 2 = 2 ÷ 2 = 1, but 8 ÷ (4 ÷ 2) = 8 ÷ 2 = 4.
U+22A2 &#8866; &vdash; \vdash turnstile proves propositional logic, first-order logic xy means x proves (syntactically entails) y (AB) ⊢ (¬B → ¬A)
U+22A8 &#8872; &vDash; \vDash, \models double turnstile models propositional logic, first-order logic xy means x models (semantically entails) y (AB) ⊨ (¬B → ¬A)

Advanced and rarely used logical symbols

These symbols are sorted by their Unicode value:

Symbol Unicode
value
(hexadecimal)
HTML
value
(decimal)
HTML
entity
(named)
LaTeX
symbol
Logic Name Read as Category Explanation Examples
̅
U+0305 COMBINING OVERLINE used format for denoting Gödel numbers.

denoting negation used primarily in electronics.

using HTML style "4̅" is a shorthand for the standard numeral "SSSS0".

"A ∨ B" says the Gödel number of "(A ∨ B)". "A ∨ B" is the same as "¬(A ∨ B)".


|
U+2191
U+007C
UPWARDS ARROW
VERTICAL LINE
Sheffer stroke, the sign for the NAND operator (negation of conjunction).
U+2193 DOWNWARDS ARROW Peirce Arrow, the sign for the NOR operator (negation of disjunction).
U+2299 \odot CIRCLED DOT OPERATOR the sign for the XNOR operator (negation of exclusive disjunction).
U+2201 COMPLEMENT
U+2204 THERE DOES NOT EXIST strike out existential quantifier, same as "¬∃"
U+2234 ∴\therefore THEREFORE Therefore
U+2235 BECAUSE because
U+22A7 MODELS is a model of (or "is a valuation satisfying")
U+22A8 TRUE is true of
U+22AC DOES NOT PROVE negated ⊢, the sign for "does not prove" TP says "P is not a theorem of T"
U+22AD NOT TRUE is not true of
U+2020 DAGGER it is true that ... Affirmation operator
U+22BC NAND NAND operator
U+22BD NOR NOR operator
U+25C7 WHITE DIAMOND modal operator for "it is possible that", "it is not necessarily not" or rarely "it is not probably not" (in most modal logics it is defined as "¬◻¬")
U+22C6 STAR OPERATOR usually used for ad-hoc operators

U+22A5
U+2193
UP TACK
DOWNWARDS ARROW
Webb-operator or Peirce arrow, the sign for NOR. Confusingly, "⊥" is also the sign for contradiction or absurdity.
U+2310 REVERSED NOT SIGN

U+231C
U+231D
\ulcorner

\urcorner

TOP LEFT CORNER
TOP RIGHT CORNER
corner quotes, also called "Quine quotes"; for quasi-quotation, i.e. quoting specific context of unspecified ("variable") expressions;[4] also used for denoting Gödel number;[5] for example "⌜G⌝" denotes the Gödel number of G. (Typographical note: although the quotes appears as a "pair" in unicode (231C and 231D), they are not symmetrical in some fonts. And in some fonts (for example Arial) they are only symmetrical in certain sizes. Alternatively the quotes can be rendered as ⌈ and ⌉ (U+2308 and U+2309) or by using a negation symbol and a reversed negation symbol ⌐ ¬ in superscript mode. )

U+25FB
U+25A1
WHITE MEDIUM SQUARE
WHITE SQUARE
modal operator for "it is necessary that" (in modal logic), or "it is provable that" (in provability logic), or "it is obligatory that" (in deontic logic), or "it is believed that" (in doxastic logic); also as empty clause (alternatives: and ⊥)
U+27DB LEFT AND RIGHT TACK semantic equivalent
U+27E1 WHITE CONCAVE-SIDED DIAMOND never modal operator
U+27E2 WHITE CONCAVE-SIDED DIAMOND WITH LEFTWARDS TICK was never modal operator
U+27E3 WHITE CONCAVE-SIDED DIAMOND WITH RIGHTWARDS TICK will never be modal operator
U+25A1 WHITE SQUARE always modal operator
U+25A4 WHITE SQUARE WITH LEFTWARDS TICK was always modal operator
U+25A5 WHITE SQUARE WITH RIGHTWARDS TIC will always be modal operator
U+297D RIGHT FISH TAIL sometimes used for "relation", also used for denoting various ad hoc relations (for example, for denoting "witnessing" in the context of Rosser's trick) The fish hook is also used as strict implication by C.I.Lewis , the corresponding LaTeX macro is \strictif. See here for an image of glyph. Added to Unicode 3.2.0.
U+2A07 TWO LOGICAL AND OPERATOR

Usage in various countries

Poland and Germany

As of 2014 in Poland, the universal quantifier is sometimes written , and the existential quantifier as .[6][7] The same applies for Germany.[8][9]

Japan

The ⇒ symbol is often used in text to mean "result" or "conclusion", as in "We examined whether to sell the product ⇒ We will not sell it". Also, the → symbol is often used to denote "changed to", as in the sentence "The interest rate changed. March 20% → April 21%".

See also

References

  1. ^ "Named character references". HTML 5.1 Nightly. W3C. Retrieved 9 September 2015.
  2. ^ "Material conditional".
  3. ^ Although this character is available in LaTeX, the MediaWiki TeX system does not support it.
  4. ^ Quine, W.V. (1981): Mathematical Logic, §6
  5. ^ Hintikka, Jaakko (1998), The Principles of Mathematics Revisited, Cambridge University Press, p. 113, ISBN 9780521624985.
  6. ^ "Kwantyfikator ogólny". 2 October 2017 – via Wikipedia.[circular reference]
  7. ^ "Kwantyfikator egzystencjalny". 23 January 2016 – via Wikipedia.[circular reference]
  8. ^ "Quantor". 21 January 2018 – via Wikipedia.[circular reference]
  9. ^ Hermes, Hans. Einführung in die mathematische Logik: klassische Prädikatenlogik. Springer-Verlag, 2013.

Further reading

  • Józef Maria Bocheński (1959), A Précis of Mathematical Logic, trans., Otto Bird, from the French and German editions, Dordrecht, South Holland: D. Reidel.