Paul F. McMillan: Difference between revisions
Tassedethe (talk | contribs) removed Category:Living people; added Category:2022 deaths using HotCat |
|||
Line 44: | Line 44: | ||
{{DEFAULTSORT:McMillan, Paul F.}} |
{{DEFAULTSORT:McMillan, Paul F.}} |
||
⚫ | |||
[[Category:1956 births]] |
[[Category:1956 births]] |
||
⚫ | |||
⚫ | |||
[[Category:People from Edinburgh]] |
[[Category:People from Edinburgh]] |
||
[[Category:20th-century British chemists]] |
[[Category:20th-century British chemists]] |
||
Line 51: | Line 52: | ||
[[Category:Alumni of University College London]] |
[[Category:Alumni of University College London]] |
||
[[Category:Arizona State University alumni]] |
[[Category:Arizona State University alumni]] |
||
⚫ |
Revision as of 00:00, 13 February 2022
This article may rely excessively on sources too closely associated with the subject, potentially preventing the article from being verifiable and neutral. (February 2022) |
Paul Francis McMillan | |
---|---|
Born | |
Died | February 2, 2022[1][2] London, U.K. | (aged 65)
Nationality | British, French |
Occupation(s) | Academic and scientist |
Scientific career | |
Fields |
|
Institutions | University College London, Arizona State University |
Thesis | A structural study of aluminosilicate glasses by Raman spectroscopy (1981) |
Doctoral advisor | Alexandra Navrotsky, John Holloway |
Doctoral students | Emanuel Soignard, Ashkan Salamat, Raul Quesada Cabrera, Rachael Hazael |
Website | www |
Paul Francis McMillan (born 3 June, 1956) was a Scottish chemist who held the Sir William Ramsay Chair of Chemistry at University College London.[3] His research considered the study of matter under extreme conditions of temperature and pressure, with a focus on phase transitions, amorphisation, and the study of glassy states. He has also investigated the survival of bacteria and larger organisms (tardigrades) under extreme compression, studies of amyloid fibrils,[4] the synthesis and characterisation of carbonitride nanocrystals and the study of water motion in confined environments. He has made extensive use of Raman spectroscopy together with X-ray diffraction and neutron scattering techniques.
Early life and education
McMillan was born in Edinburgh and brought up in Loanhead, a small mining and farming village at the base of the Pentland Hills.[5] He attended Lasswade High School where he graduated with the Marshall Memorial medal.[5] He then studied for a bachelor's degree in chemistry at the University of Edinburgh.[5] After graduating, McMillan moved to Arizona State University, where he researched geochemistry with John Holloway and Alexandra Navrotsky.[5] His doctoral research was in using vibrational spectroscopy to investigate the structures of silicate glasses.[6]
Research and career
McMillan worked as a postdoctoral fellow at Arizona State University, where he installed one of the first micro-beam Raman spectroscopy instruments in the US. He used Raman spectroscopy to study high pressure minerals and materials. He was hired to a teaching position at Arizona State University in 1983, and promoted to Professor in the Department of Chemistry and Biochemistry in 1993.[5] He was appointed Director of the Center for Solid State Science in 1997 and was named Presidential Professor of the Sciences.[5] In 2000 he was awarded the Brunauer Cement Award of American Ceramic Society.[7] In 2000, McMillan returned to the United Kingdom, where he was made Professor of Solid State Chemistry at University College London, an appointment jointly held with the Royal Institution.[5] McMillan has also held visiting positions at the Universités of Nantes and Rennes, the Ecole Normale Supérieure and Université Claude Bernard.[citation needed]
McMillan's research involved the exploration of solid state chemistry under extreme high pressure and high temperature conditions using diamond anvil cells.[8] New compounds and materials are prepared and studied at up to a million atmospheres and thousands of degrees centigrade using spectroscopy and synchrotron X-ray diffraction.[9] He studied the properties and structure of liquids, amorphous solids and biological molecules at high pressure.[8] McMillan has contributed across numerous fields and has published work relating to solid state inorganic/materials chemistry, high pressure-high temperature research,[10] amorphous solids and liquids,[11] vibrational spectroscopy,[12] synchrotron X-ray and neutron scattering, mineral physics, graphitic carbonitrides,[13] battery materials and the response of bacteria to high pressures.[14]
In 2015 McMillan was a panellist on Melvyn Bragg's In Our Time on BBC Radio 4.[15]
Selected publications
- C. A. Angell; K. L. Ngai; G. B. McKenna; P. F. McMillan; S. W. Martin (15 September 2000). "Relaxation in glassforming liquids and amorphous solids". Journal of Applied Physics. 88 (6): 3113–3157. doi:10.1063/1.1286035. ISSN 0021-8979. Wikidata Q56552594.
- Paul F McMillan (1 September 2002). "New materials from high-pressure experiments". Nature Materials. 1 (1): 19–25. doi:10.1038/NMAT716. ISSN 1476-1122. PMID 12618843. Wikidata Q73082944.
- P. H. Poole; T. Grande; C. A. Angell; P. F. McMillan (17 January 1997). "Polymorphic Phase Transitions in Liquids and Glasses". Science. 275 (5298): 322–323. doi:10.1126/SCIENCE.275.5298.322. ISSN 0036-8075. Wikidata Q57567948.
References
- ^ @SellaTheChemist (2 February 2022). "It is with deep grief that I tell you that our friend, colleague and teacher, Paul McMillan, died this afternoon" (Tweet) – via Twitter.
- ^ Salamat, Ashkan; Hazael, Rachael (7 February 2022), Obituary on the AIRAPT webpage
- ^ "Personal Webpage of Prof Paul McMillan". Retrieved 3 January 2022.
- ^ Meersman, F; McMillan, PF (2014). "High hydrostatic pressure: a probing tool and a necessary parameter in biophysical chemistry". Chem. Comm. 50 (7): 766–775. doi:10.1039/c3cc45844j. PMID 24286104.
- ^ a b c d e f g James, Frank A. J. L. (2017-07-05). 'The Common Purposes of Life': Science and Society at the Royal Institution of Great Britain. Taylor & Francis. p. 387. ISBN 978-1-351-96317-6.
- ^ McMillan, Paul F (1981). A structural study of aluminosilicate glasses by Raman spectroscopy. U of Arizona.
- ^ "Brunauer Cements Award" (PDF). American Ceramic Society. Retrieved 3 Feb 2022.
- ^ a b Katrusiak, Andrzej; McMillan, Paul (2004-03-31). High-Pressure Crystallography. Springer Science & Business Media. ISBN 978-1-4020-2102-2.
- ^ UCL (2020-09-30). "Materials for the Future". Chemistry. Retrieved 2022-02-01.
- ^ McMillan, Paul F. (September 2002). "New materials from high-pressure experiments". Nature Materials. 1 (1): 19–25. Bibcode:2002NatMa...1...19M. doi:10.1038/nmat716. PMID 12618843. S2CID 43121729.
- ^ Angell, CA; Ngai, KL; McKenna, GB; McMillan, PF; Martin, SW (2000). "Relaxation in glassforming liquids and amorphous solids". J. Appl. Phys. 88 (6): 3113-3157. Bibcode:2000JAP....88.3113A. doi:10.1063/1.1286035.
- ^ Yu, P; Kirkpatrick, RJ; Poe, B; McMillan, PF; Cong, X (1999). "Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy". J. Amer. Ceram. Soc. 83 (3): 742. doi:10.1111/j.1151-2916.1999.tb01826.x.
- ^ Jorge, BA (2013). "H-2 and O-2 Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials". J. Phys. Chem. C. 117 (14): 7178. doi:10.1021/jp4009338.
- ^ Foglia, F; Hazael, R; De Meersman, F; Wilding, MC; Sakai, VG; Rogers, S; Bove, LE; Koza, MM; Moulin, M; Haertlein, M; Forsyth, VT; McMillan, PF (2019). "In Vivo Water Dynamics in Shewanella oneidensis Bacteria at High Pressure". Scientific Reports. 9 (1): 8716. Bibcode:2019NatSR...9.8716F. doi:10.1038/s41598-019-44704-3. PMC 6581952. PMID 31213614.
- ^ "The Science of Glass". BBC Sounds. Retrieved 4 February 2022.