Jump to content

Pleurotus eryngii: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Ecology: oops
Line 60: Line 60:
Pleurotus populations growing on [[umbellifer]]s seem to have recently diverged through a [[sympatric speciation]] process, that is based on both intrinsic reproductive barriers and extrinsic ecogeographical factors.
Pleurotus populations growing on [[umbellifer]]s seem to have recently diverged through a [[sympatric speciation]] process, that is based on both intrinsic reproductive barriers and extrinsic ecogeographical factors.


Pleurotus eryngii is a Saprotrophic fungus. Saprotrophic fungi use the process of chemoheterotrophic extracellular digestion involved in the processing of decayed organic matter. They are an NTF, nematode-trapping fungi, that survives by trapping and digesting nematodes working as a natural pesticide. These fungi produce trapping devices to capture, kill, and digest nematodes as food sources. Traps are not only the weapons that NTF use to capture and infect nematodes but also an important indicator of their switch from a saprophytic to a predacious lifestyle. Pleurotus eryngii can live both saprophytically on organic matter and as predators by capturing tiny animals. The development of traps shows their evolutionary importance of them. They provide a crucial role in obtaining nutrients and may confer competitive advantages over non-predatory fungi. This fungal carnivorism diverged from saprophytism about 419 million years ago (Mya), after the origin of nematodes about 550–600 Mya. This following evolution of the fungi after the nematode suggests the co-evolution of the species. Phylogenetic analysis suggested that NTF have a common ancestor and the ability to capture nematodes has been an important trait for speciation and diversification within the clade.
Pleurotus eryngii is a [[Saprotrophic nutrition|saprotrophic]] fungus. Saprotrophic fungi use the process of chemoheterotrophic extracellular digestion involved in the processing of decayed organic matter. They are also an NTF, [[nematode-trapping fungi]], that survives by trapping and digesting nematodes working as a natural pesticide. These fungi produce trapping devices to capture, kill, and digest nematodes as food sources. Traps are not only the weapons that NTF use to capture and infect nematodes but also an important indicator of their switch from a saprophytic to a predacious lifestyle. Pleurotus eryngii can live both saprophytically on organic matter and as predators by capturing tiny animals. The development of traps shows their evolutionary importance of them. They provide a crucial role in obtaining nutrients and may confer competitive advantages over non-predatory fungi. This fungal carnivorism diverged from saprophytism about 419 million years ago (Mya), after the origin of nematodes about 550–600 Mya. This following evolution of the fungi after the nematode suggests the co-evolution of the species. Phylogenetic analysis suggested that NTF have a common ancestor and the ability to capture nematodes has been an important trait for speciation and diversification within the clade.



P. eryngii extract reduced the number of Panagrellus sp. larvae after 24 h by 90%. P. eryngii fungus has predatory activity against Panagrellus sp. larvae due to toxins production and negatively affects M. javanica eggs and juveniles development
P. eryngii extract reduced the number of Panagrellus sp. larvae after 24 h by 90%. P. eryngii fungus has predatory activity against Panagrellus sp. larvae due to toxins production and negatively affects M. javanica eggs and juveniles development

Revision as of 12:33, 30 April 2022

Pleurotus eryngii
Two Pleurotus eryngii mushrooms, one standing up and another laying on its side with its cap facing away from the camera.
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Agaricomycetes
Order: Agaricales
Family: Pleurotaceae
Genus: Pleurotus
Species:
P. eryngii
Binomial name
Pleurotus eryngii
(DC.) Quél. 1872
Pleurotus eryngii
View the Mycomorphbox template that generates the following list
Gills on hymenium
Cap is depressed or offset
Hymenium is decurrent
Stipe is bare
Spore print is white
Ecology is saprotrophic
Edibility is choice

Pleurotus eryngii (also known as king trumpet mushroom, French horn mushroom, eryngi, king oyster mushroom, king brown mushroom, boletus of the steppes[Note 1], trumpet royale, aliʻi oyster) is an edible mushroom native to Mediterranean regions of Europe, the Middle East, and North Africa, but also grown in many parts of Asia.[1]

Description

Pleurotus eryngii is the largest species in the oyster mushroom genus, Pleurotus, which also contains the oyster mushroom Pleurotus ostreatus. It has a thick, meaty white stem and a small tan cap (in young specimens). Its natural range extends from the Atlantic Ocean through the Mediterranean Basin and Central Europe into Western Asia and India.[2] Unlike other species of Pleurotus, which are primarily wood-decay fungi, the P. eryngii complex are also weak parasites on the roots of herbaceous plants, although they may also be cultured on organic wastes.[2][3]

Taxonomy

Its species name is derived from the fact that it grows in association with the roots of Eryngium campestre or other Eryngium plants (English names: 'sea holly' or 'eryngo'). P. eryngii is a species complex, and a number of varieties have been described, with differing plant associates in the carrot family (Apiaceae).

  • Pleurotus eryngii var. eryngii (DC.) Quél 1872 – associated with Eryngium ssp.
  • Pleurotus eryngii var. ferulae (Lanzi) Sacc. 1887 – associated with Ferula communis[4]
  • Pleurotus eryngii var. tingitanus Lewinsohn 2002 – associated with Ferula tingitana[4]
  • Pleurotus eryngii var. elaeoselini Venturella, Zervakis & La Rocca 2000 – associated with Elaeoselinum asclepium[5][6]
  • Pleurotus eryngii var. thapsiae Venturella, Zervakis & Saitta 2002 – associated with Thapsia garganica[7]

Other specimens of P. eryngii have been reported in association with plants in the genera Ferulago, Cachrys, Laserpitium, and Diplotaenia.[2]

Molecular studies have shown Pleurotus nebrodensis to be closely related to, but distinct from, P. eryngii.[2] Pleurotus fossulatus may be another closely related species.[2]

Uses

The mushroom has a good shelf life and is cultivated widely. It has little flavor or aroma when raw. When cooked, it develops rich umami flavor and a meaty texture. When cultivating RAPD can be used in the mushroom industry for the classification and maintenance of high-quality mushroom spawns. P. eryngii, are commercially produced, edible mushrooms, with P. eryngii making up 30% of the Korean edible mushroom market since its introduction in 1995. It is commonly used as a meat substitute in many vegan recipes.

Pleurotus eryngii may contain chemicals that stimulate the immune system.[8] Dietary intake of Pleurotus eryngii may function as cholesterol-lowering dietary agent.[9]

Like some other Pleurotus species, P. eryngii attacks nematodes and may provide a control method for these parasites when they infect cats and dogs.[citation needed]

It's very frequently used in Apulian cuisine. An example of this is when it is put on top of Orecchiette.

Verification of the species

Sequence analysis of the ITS1–5.8S rDNA–ITS2 of P. eryngii and the control strains P. ostreatus and P. ferulae, demonstrated that the DNA regions share almost 99 % of sequence identity, indicating closely related mushroom strains. ITS1–5.8S rDNA–ITS2 sequence analysis is DNA sequencing used to confirm the mushroom species at hand, although it does distinguish variants in the mushroom species. RAPD are superior to DNA sequence-based methods with distinguishing strains in species. To verify the mushroom strains RAPD was used, and DNA fragments were amplified from the total cellular DNA. Verification of Pleurotus eryngii strains was assessed using ITS sequence analysis and RAPD fingerprinting. Analysis of the DNA fragment pattern showed that the 22 P. eryngii strains were clearly distinguished from the control strains P. ostreatus and P. ferulae, and could be categorized into five subgroups:

  • Group 1- commonly showed widely spaced gills under the convex cap. They tended to form small fruiting bodies. Eastern Europe. 24-25C optimum growth
  • Group 2- funnel-shaped cap phenotype with a stout stem. Members in this group grew faster than other mushrooms. They required 15–16 d from the fructification for harvest whereas the others required 18–21 d.
  • Group 3- shared similar morphological characteristics; they formed thin fruiting bodies with a small convex cap. Strains KNR2514 and KNR 2522
  • Group 4- resembled group I mushrooms morphologically but grew at around 27 °C.
  • Group 5- was collected from Iran; they grew as mycelia but hardly formed fruiting bodies. In this group, we only succeeded in generating fruiting bodies for KNR2517, which had a wide, white, convex cap. Their optimal growth temperature was the lowest among the strains tested (19–21 °C), which may reflect their geographical origin.

Evolution

Pleurotus populations growing on umbellifers seem to have recently diverged through a sympatric speciation process, that is based on both intrinsic reproductive barriers and extrinsic ecogeographical factors.

Pleurotus eryngii is a saprotrophic fungus. Saprotrophic fungi use the process of chemoheterotrophic extracellular digestion involved in the processing of decayed organic matter. They are also an NTF, nematode-trapping fungi, that survives by trapping and digesting nematodes working as a natural pesticide. These fungi produce trapping devices to capture, kill, and digest nematodes as food sources. Traps are not only the weapons that NTF use to capture and infect nematodes but also an important indicator of their switch from a saprophytic to a predacious lifestyle. Pleurotus eryngii can live both saprophytically on organic matter and as predators by capturing tiny animals. The development of traps shows their evolutionary importance of them. They provide a crucial role in obtaining nutrients and may confer competitive advantages over non-predatory fungi. This fungal carnivorism diverged from saprophytism about 419 million years ago (Mya), after the origin of nematodes about 550–600 Mya. This following evolution of the fungi after the nematode suggests the co-evolution of the species. Phylogenetic analysis suggested that NTF have a common ancestor and the ability to capture nematodes has been an important trait for speciation and diversification within the clade.

P. eryngii extract reduced the number of Panagrellus sp. larvae after 24 h by 90%. P. eryngii fungus has predatory activity against Panagrellus sp. larvae due to toxins production and negatively affects M. javanica eggs and juveniles development

See also

Notes

  1. ^ The name "boletus of the steppes" is misleading as Pleurotus eryngii is a gilled mushroom in order Agaricales, and Boletus is a genus of mushrooms with pores rather than gills in order Boletales.

References

  1. ^ [1] Archived May 18, 2006, at the Wayback Machine
  2. ^ a b c d e Zervakis, Georgios I.; Venturella, Giuseppe; Papadopoulou, Kalliopi (2001). "Genetic polymorphism and taxonomic infrastructure of the Pleurotus eryngii species-complex as determined by RAPD analysis, isozyme profiles and ecomorphological characters". Microbiology. 147 (11): 3183–3194. doi:10.1099/00221287-147-11-3183. PMID 11700370.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ Alma E. Rodriguez Estrada & Daniel J. Royse (February 2008). "Pleurotus eryngii and P. nebrodensis: from the wild to commercial production". Mushroom News. Archived from the original on 2014-06-10.
  4. ^ a b Lewinsohn, D.; Wasser, S. P.; Reshetnikov, S. V.; Hadar, Y.; Nevo, E. (2002). "The Pleurotus eryngii species-complex in Israel: Distribution and morphological description of a New Taxon". Mycotaxon. 81: 51–67.
  5. ^ Venturella, G.; Zervakis, G.; La Rocca, S. (2000). "Pleurotus eryngii var. elaeoselini var. nov. from Sicily". Mycotaxon. 76: 419–427.
  6. ^ Alma E. Rodriguez Estrada; Maria del Mar Jimenez-Gasco & Daniel J. Royse (May–June 2010). "Pleurotus eryngii species complex: Sequence analysis and phylogeny based on partial EF1α and RPB2 genes". Fungal Biology. 114 (5–6): 421–428. doi:10.1016/j.funbio.2010.03.003. PMID 20943152.
  7. ^ Venturella, G.; G. Zervakis & A. Saitta (2002). "Pleurotus eryngii var. thapsiae var. nov. from Sicily". Mycotaxon. 81: 69–74.
  8. ^ Nozaki H, Itonori S, Sugita M, Nakamura K, Ohba K, Suzuki A, Kushi Y (Aug 2008), "Mushroom acidic glycosphingolipid induction of cytokine secretion from murine T cells and proliferation of NK1.1 alpha/beta TCR-double positive cells in vitro", Biochemical and Biophysical Research Communications, 373 (3): 435–9, doi:10.1016/j.bbrc.2008.06.047, PMID 18577373
  9. ^ Alam, Nuhu; Yoon, Ki Nam; Lee, Jae Seong; Cho, Hae Jin; Shim, Mi Ja; Lee, Tae Soo (Oct 2011). "Dietary effect of Pleurotus eryngii on biochemical function and histology in hypercholesterolemic rats". Saudi Journal of Biological Sciences. 18 (4): 403–409. doi:10.1016/j.sjbs.2011.07.001. ISSN 1319-562X. PMC 3730794. PMID 23961153.

Sources

Media related to Pleurotus eryngii at Wikimedia Commons