Jump to content

Biophysics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Add: pmid, issue. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 1522/3850
OAbot (talk | contribs)
m Open access bot: hdl added to citation with #oabot.
Line 12: Line 12:
[[Fluorescent]] imaging techniques, as well as [[electron microscopy]], [[x-ray crystallography]], [[NMR spectroscopy]], [[atomic force microscopy]] (AFM) and [[small-angle scattering]] (SAS) both with [[Small-angle X-ray scattering|X-rays]] and [[Small-angle neutron scattering|neutrons]] (SAXS/SANS) are often used to visualize structures of biological significance. [[Protein dynamics]] can be observed by [[neutron spin echo]] spectroscopy. [[Conformational change]] in structure can be measured using techniques such as [[dual polarisation interferometry]], [[circular dichroism]], [[SAXS]] and [[Small-angle neutron scattering|SANS]]. Direct manipulation of molecules using [[optical tweezers]] or [[Atomic force microscopy|AFM]], can also be used to monitor biological events where forces and distances are at the nanoscale. Molecular biophysicists often consider complex biological events as systems of interacting entities which can be understood e.g. through [[statistical mechanics]], [[thermodynamics]] and [[chemical kinetics]]. By drawing knowledge and experimental techniques from a wide variety of disciplines, biophysicists are often able to directly observe, model or even manipulate the structures and interactions of individual [[molecules]] or complexes of molecules.
[[Fluorescent]] imaging techniques, as well as [[electron microscopy]], [[x-ray crystallography]], [[NMR spectroscopy]], [[atomic force microscopy]] (AFM) and [[small-angle scattering]] (SAS) both with [[Small-angle X-ray scattering|X-rays]] and [[Small-angle neutron scattering|neutrons]] (SAXS/SANS) are often used to visualize structures of biological significance. [[Protein dynamics]] can be observed by [[neutron spin echo]] spectroscopy. [[Conformational change]] in structure can be measured using techniques such as [[dual polarisation interferometry]], [[circular dichroism]], [[SAXS]] and [[Small-angle neutron scattering|SANS]]. Direct manipulation of molecules using [[optical tweezers]] or [[Atomic force microscopy|AFM]], can also be used to monitor biological events where forces and distances are at the nanoscale. Molecular biophysicists often consider complex biological events as systems of interacting entities which can be understood e.g. through [[statistical mechanics]], [[thermodynamics]] and [[chemical kinetics]]. By drawing knowledge and experimental techniques from a wide variety of disciplines, biophysicists are often able to directly observe, model or even manipulate the structures and interactions of individual [[molecules]] or complexes of molecules.


In addition to traditional (i.e. molecular and cellular) biophysical topics like [[structural biology]] or [[enzyme kinetics]], modern biophysics encompasses an extraordinarily broad range of research, from [[bioelectronics]] to [[quantum biology]] involving both experimental and theoretical tools. It is becoming increasingly common for biophysicists to apply the models and experimental techniques derived from [[physics]], as well as [[mathematics]] and [[statistics]], to larger systems such as [[Tissue (biology)|tissues]], [[organ (anatomy)|organs]],<ref>{{cite journal|last1=Sahai|first1=Erik|last2=Trepat|first2=Xavier|date=July 2018|title=Mesoscale physical principles of collective cell organization|journal=Nature Physics|volume=14|issue=7|pages=671–682|doi=10.1038/s41567-018-0194-9|bibcode=2018NatPh..14..671T|hdl=2445/180672|s2cid=125739111|issn=1745-2481}}</ref> [[population biology|populations]]<ref>{{cite journal|last=Popkin|first=Gabriel|date=2016-01-07|title=The physics of life|journal=Nature News|volume=529|issue=7584|pages=16–18|doi=10.1038/529016a|pmid=26738578|bibcode=2016Natur.529...16P|doi-access=free}}</ref> and [[ecosystems]]. Biophysical models are used extensively in the study of electrical conduction in single [[neurons]], as well as neural circuit analysis in both tissue and whole brain.
In addition to traditional (i.e. molecular and cellular) biophysical topics like [[structural biology]] or [[enzyme kinetics]], modern biophysics encompasses an extraordinarily broad range of research, from [[bioelectronics]] to [[quantum biology]] involving both experimental and theoretical tools. It is becoming increasingly common for biophysicists to apply the models and experimental techniques derived from [[physics]], as well as [[mathematics]] and [[statistics]], to larger systems such as [[Tissue (biology)|tissues]], [[organ (anatomy)|organs]],<ref>{{cite journal|last1=Sahai|first1=Erik|last2=Trepat|first2=Xavier|date=July 2018|title=Mesoscale physical principles of collective cell organization|journal=Nature Physics|volume=14|issue=7|pages=671–682|doi=10.1038/s41567-018-0194-9|bibcode=2018NatPh..14..671T|hdl=2445/180672|s2cid=125739111|issn=1745-2481|hdl-access=free}}</ref> [[population biology|populations]]<ref>{{cite journal|last=Popkin|first=Gabriel|date=2016-01-07|title=The physics of life|journal=Nature News|volume=529|issue=7584|pages=16–18|doi=10.1038/529016a|pmid=26738578|bibcode=2016Natur.529...16P|doi-access=free}}</ref> and [[ecosystems]]. Biophysical models are used extensively in the study of electrical conduction in single [[neurons]], as well as neural circuit analysis in both tissue and whole brain.


[[Medical physics]], a branch of biophysics, is any application of [[physics]] to [[medicine]] or [[healthcare]], ranging from [[radiology]] to [[microscopy]] and [[nanomedicine]]. For example, physicist [[Richard Feynman]] theorized about the future of [[nanomedicine]]. He wrote about the idea of a ''medical'' use for [[biological machine]]s (see [[nanomachines]]). Feynman and [[Albert Hibbs]] suggested that certain repair machines might one day be reduced in size to the point that it would be possible to (as Feynman put it) "[[Biological machine|swallow the doctor]]". The idea was discussed in Feynman's 1959 essay ''[[There's Plenty of Room at the Bottom]].<ref>{{cite web | url = http://www.its.caltech.edu/~feynman/plenty.html | title = There's Plenty of Room at the Bottom | first = Richard P. | last = Feynman | name-list-style = vanc | date = December 1959 | access-date = 2017-01-01 | archive-url = https://web.archive.org/web/20100211190050/http://www.its.caltech.edu/~feynman/plenty.html | archive-date = 2010-02-11 | url-status = dead }}</ref>
[[Medical physics]], a branch of biophysics, is any application of [[physics]] to [[medicine]] or [[healthcare]], ranging from [[radiology]] to [[microscopy]] and [[nanomedicine]]. For example, physicist [[Richard Feynman]] theorized about the future of [[nanomedicine]]. He wrote about the idea of a ''medical'' use for [[biological machine]]s (see [[nanomachines]]). Feynman and [[Albert Hibbs]] suggested that certain repair machines might one day be reduced in size to the point that it would be possible to (as Feynman put it) "[[Biological machine|swallow the doctor]]". The idea was discussed in Feynman's 1959 essay ''[[There's Plenty of Room at the Bottom]].<ref>{{cite web | url = http://www.its.caltech.edu/~feynman/plenty.html | title = There's Plenty of Room at the Bottom | first = Richard P. | last = Feynman | name-list-style = vanc | date = December 1959 | access-date = 2017-01-01 | archive-url = https://web.archive.org/web/20100211190050/http://www.its.caltech.edu/~feynman/plenty.html | archive-date = 2010-02-11 | url-status = dead }}</ref>

Revision as of 03:55, 30 January 2023

Kinesin uses protein domain dynamics on nanoscales to "walk" along a microtubule.

Biophysics is an interdisciplinary science that applies approaches and methods traditionally used in physics to study biological phenomena.[1][2][3] Biophysics covers all scales of biological organization, from molecular to organismic and populations. Biophysical research shares significant overlap with biochemistry, molecular biology, physical chemistry, physiology, nanotechnology, bioengineering, computational biology, biomechanics, developmental biology and systems biology.

The term biophysics was originally introduced by Karl Pearson in 1892.[4][5] The term biophysics is also regularly used in academia to indicate the study of the physical quantities (e.g. electric current, temperature, stress, entropy) in biological systems. Other biological sciences also perform research on the biophysical properties of living organisms including molecular biology, cell biology, chemical biology, and biochemistry.

Overview

Molecular biophysics typically addresses biological questions similar to those in biochemistry and molecular biology, seeking to find the physical underpinnings of biomolecular phenomena. Scientists in this field conduct research concerned with understanding the interactions between the various systems of a cell, including the interactions between DNA, RNA and protein biosynthesis, as well as how these interactions are regulated. A great variety of techniques are used to answer these questions.

A ribosome is a biological machine that utilizes protein dynamics

Fluorescent imaging techniques, as well as electron microscopy, x-ray crystallography, NMR spectroscopy, atomic force microscopy (AFM) and small-angle scattering (SAS) both with X-rays and neutrons (SAXS/SANS) are often used to visualize structures of biological significance. Protein dynamics can be observed by neutron spin echo spectroscopy. Conformational change in structure can be measured using techniques such as dual polarisation interferometry, circular dichroism, SAXS and SANS. Direct manipulation of molecules using optical tweezers or AFM, can also be used to monitor biological events where forces and distances are at the nanoscale. Molecular biophysicists often consider complex biological events as systems of interacting entities which can be understood e.g. through statistical mechanics, thermodynamics and chemical kinetics. By drawing knowledge and experimental techniques from a wide variety of disciplines, biophysicists are often able to directly observe, model or even manipulate the structures and interactions of individual molecules or complexes of molecules.

In addition to traditional (i.e. molecular and cellular) biophysical topics like structural biology or enzyme kinetics, modern biophysics encompasses an extraordinarily broad range of research, from bioelectronics to quantum biology involving both experimental and theoretical tools. It is becoming increasingly common for biophysicists to apply the models and experimental techniques derived from physics, as well as mathematics and statistics, to larger systems such as tissues, organs,[6] populations[7] and ecosystems. Biophysical models are used extensively in the study of electrical conduction in single neurons, as well as neural circuit analysis in both tissue and whole brain.

Medical physics, a branch of biophysics, is any application of physics to medicine or healthcare, ranging from radiology to microscopy and nanomedicine. For example, physicist Richard Feynman theorized about the future of nanomedicine. He wrote about the idea of a medical use for biological machines (see nanomachines). Feynman and Albert Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would be possible to (as Feynman put it) "swallow the doctor". The idea was discussed in Feynman's 1959 essay There's Plenty of Room at the Bottom.[8]

History

Some of the earlier studies in biophysics were conducted in the 1840s by a group known as the Berlin school of physiologists. Among its members were pioneers such as Hermann von Helmholtz, Ernst Heinrich Weber, Carl F. W. Ludwig, and Johannes Peter Müller.[9] Biophysics might even be seen as dating back to the studies of Luigi Galvani.

The popularity of the field rose when the book What Is Life? by Erwin Schrödinger was published. Since 1957, biophysicists have organized themselves into the Biophysical Society which now has about 9,000 members over the world.[10]

Some authors such as Robert Rosen criticize biophysics on the ground that the biophysical method does not take into account the specificity of biological phenomena.[11]

Focus as a subfield

While some colleges and universities have dedicated departments of biophysics, usually at the graduate level, many do not have university-level biophysics departments, instead having groups in related departments such as biochemistry, cell biology, chemistry, computer science, engineering, mathematics, medicine, molecular biology, neuroscience, pharmacology, physics, and physiology. Depending on the strengths of a department at a university differing emphasis will be given to fields of biophysics. What follows is a list of examples of how each department applies its efforts toward the study of biophysics. This list is hardly all inclusive. Nor does each subject of study belong exclusively to any particular department. Each academic institution makes its own rules and there is much overlap between departments.[citation needed]

Many biophysical techniques are unique to this field. Research efforts in biophysics are often initiated by scientists who were biologists, chemists or physicists by training.

See also

References

  1. ^ "Biophysics | science". Encyclopedia Britannica. Retrieved 2018-07-26.
  2. ^ Zhou HX (March 2011). "Q&A: What is biophysics?". BMC Biology. 9: 13. doi:10.1186/1741-7007-9-13. PMC 3055214. PMID 21371342.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  3. ^ "the definition of biophysics". www.dictionary.com. Retrieved 2018-07-26.
  4. ^ Pearson, Karl (1892). The Grammar of Science. p. 470.
  5. ^ Roland Glaser. Biophysics: An Introduction. Springer; 23 April 2012. ISBN 978-3-642-25212-9.
  6. ^ Sahai, Erik; Trepat, Xavier (July 2018). "Mesoscale physical principles of collective cell organization". Nature Physics. 14 (7): 671–682. Bibcode:2018NatPh..14..671T. doi:10.1038/s41567-018-0194-9. hdl:2445/180672. ISSN 1745-2481. S2CID 125739111.
  7. ^ Popkin, Gabriel (2016-01-07). "The physics of life". Nature News. 529 (7584): 16–18. Bibcode:2016Natur.529...16P. doi:10.1038/529016a. PMID 26738578.
  8. ^ Feynman RP (December 1959). "There's Plenty of Room at the Bottom". Archived from the original on 2010-02-11. Retrieved 2017-01-01.
  9. ^ Franceschetti DR (15 May 2012). Applied Science. Salem Press Inc. p. 234. ISBN 978-1-58765-781-8.
  10. ^ Rosen J, Gothard LQ (2009). Encyclopedia of Physical Science. Infobase Publishing. p. 4 9. ISBN 978-0-8160-7011-4.
  11. ^ Longo G, Montévil M (2012-01-01). "The Inert vs. the Living State of Matter: Extended Criticality, Time Geometry, Anti-Entropy - An Overview". Frontiers in Physiology. 3: 39. doi:10.3389/fphys.2012.00039. PMC 3286818. PMID 22375127.

Sources