Jump to content

Left ventricular hypertrophy: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
OAbot (talk | contribs)
m Open access bot: doi added to citation with #oabot.
OAbot (talk | contribs)
m Open access bot: doi updated in citation with #oabot.
Line 42: Line 42:
===Echocardiography===
===Echocardiography===
{|class="wikitable" align="right"
{|class="wikitable" align="right"
|+ Left ventricular hypertrophy grading<br> by posterior wall thickness<ref name="GolandCzer2008">{{cite journal|last1=Goland|first1=Sorel|last2=Czer|first2=Lawrence S.C.|last3=Kass|first3=Robert M.|last4=Siegel|first4=Robert J.|last5=Mirocha|first5=James|last6=De Robertis|first6=Michele A.|last7=Lee|first7=Jason|last8=Raissi|first8=Sharo|last9=Cheng|first9=Wen|last10=Fontana|first10=Gregory|last11=Trento|first11=Alfredo|title=Use of Cardiac Allografts With Mild and Moderate Left Ventricular Hypertrophy Can Be Safely Used in Heart Transplantation to Expand the Donor Pool|journal=Journal of the American College of Cardiology|volume=51|issue=12|year=2008|pages=1214–1220|issn=0735-1097|doi=10.1016/j.jacc.2007.11.052|pmid=18355661|doi-access=free}}</ref>
|+ Left ventricular hypertrophy grading<br> by posterior wall thickness<ref name="GolandCzer2008">{{cite journal|last1=Goland|first1=Sorel|last2=Czer|first2=Lawrence S.C.|last3=Kass|first3=Robert M.|last4=Siegel|first4=Robert J.|last5=Mirocha|first5=James|last6=De Robertis|first6=Michele A.|last7=Lee|first7=Jason|last8=Raissi|first8=Sharo|last9=Cheng|first9=Wen|last10=Fontana|first10=Gregory|last11=Trento|first11=Alfredo|title=Use of Cardiac Allografts With Mild and Moderate Left Ventricular Hypertrophy Can Be Safely Used in Heart Transplantation to Expand the Donor Pool|journal=Journal of the American College of Cardiology|volume=51|issue=12|year=2008|pages=1214–1220|issn=0735-1097|doi=10.1016/j.jacc.2007.11.052|pmid=18355661|doi-access=}}</ref>
|-
|-
| Mild || 12 to 13&nbsp;mm
| Mild || 12 to 13&nbsp;mm
Line 67: Line 67:
* R in aVL ≥ 11&nbsp;mm
* R in aVL ≥ 11&nbsp;mm


The '''Cornell voltage criteria'''<ref>{{cite journal |vauthors=Casale PN, Devereux RB, Alonso DR, Campo E, Kligfield P |title=Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings |journal=Circulation |volume=75 |issue=3 |pages=565–72 |year=1987 |pmid=2949887 |doi=10.1161/01.CIR.75.3.565|doi-access=free }}</ref> for the ECG diagnosis of LVH involve measurement of the sum of the R wave in lead aVL and the S wave in lead V<sub>3</sub>. The Cornell criteria for LVH are:
The '''Cornell voltage criteria'''<ref>{{cite journal |vauthors=Casale PN, Devereux RB, Alonso DR, Campo E, Kligfield P |title=Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings |journal=Circulation |volume=75 |issue=3 |pages=565–72 |year=1987 |pmid=2949887 |doi=10.1161/01.CIR.75.3.565|doi-access= }}</ref> for the ECG diagnosis of LVH involve measurement of the sum of the R wave in lead aVL and the S wave in lead V<sub>3</sub>. The Cornell criteria for LVH are:
* S in V<sub>3</sub> + R in aVL > 28&nbsp;mm (men)
* S in V<sub>3</sub> + R in aVL > 28&nbsp;mm (men)
* S in V<sub>3</sub> + R in aVL > 20&nbsp;mm (women)
* S in V<sub>3</sub> + R in aVL > 20&nbsp;mm (women)
Line 113: Line 113:
Treatment is typically focused on resolving the cause of the LVH with the enlargement not permanent in all cases. In some cases the growth can regress with the reduction of blood pressure.<ref name="pmid16627048">{{cite journal |vauthors=Gradman AH, Alfayoumi F |title=From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease |journal=Prog Cardiovasc Dis |volume=48 |issue=5 |pages=326–41 |year=2006 |pmid=16627048 |doi=10.1016/j.pcad.2006.02.001}}</ref>
Treatment is typically focused on resolving the cause of the LVH with the enlargement not permanent in all cases. In some cases the growth can regress with the reduction of blood pressure.<ref name="pmid16627048">{{cite journal |vauthors=Gradman AH, Alfayoumi F |title=From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease |journal=Prog Cardiovasc Dis |volume=48 |issue=5 |pages=326–41 |year=2006 |pmid=16627048 |doi=10.1016/j.pcad.2006.02.001}}</ref>


LVH may be a factor in determining treatment or diagnosis for other conditions, for example, LVH is used in the staging and risk stratification of Non-ischemic cardiomyopathies such as Fabry's Disease.<ref>{{cite journal |last1=Tower-Rader |first1=Albree |last2=Jaber |first2=Wael A. |title=Multimodality Imaging Assessment of Fabry Disease |journal=Circulation: Cardiovascular Imaging |date=1 November 2019 |volume=12 |issue=11 |pages=e009013 |doi=10.1161/CIRCIMAGING.119.009013 |url=https://doi.org/10.1161/CIRCIMAGING.119.009013|doi-access=free }}</ref> Patients with LVH may have to participate in more complicated and precise diagnostic procedures, such as Echocardiography or Cardiac MRI.<ref name="ASNCfive">{{Citation|author1=American Society of Nuclear Cardiology |author1-link=American Society of Nuclear Cardiology |title=Five Things Physicians and Patients Should Question |publisher=American Society of Nuclear Cardiology |work=Choosing Wisely: an initiative of the [[ABIM Foundation]] |url=http://choosingwisely.org/wp-content/uploads/2012/04/5things_12_factsheet_Amer_Soc_Nuc_Cardio.pdf |access-date=August 17, 2012 |url-status=dead |archive-url=https://web.archive.org/web/20120416220538/http://choosingwisely.org/wp-content/uploads/2012/04/5things_12_factsheet_Amer_Soc_Nuc_Cardio.pdf |archive-date=April 16, 2012 }}</ref><ref name="2007manage">{{Cite journal | last1 = Anderson | first1 = J. L. | last2 = Adams | first2 = C. D. | last3 = Antman | first3 = E. M. | last4 = Bridges | first4 = C. R. | last5 = Califf | first5 = R. M. | last6 = Casey | first6 = D. E. | last7 = Chavey | first7 = W. E. | last8 = Fesmire | first8 = F. M. | last9 = Hochman | first9 = J. S. | doi = 10.1161/CIRCULATIONAHA.107.185752 | last10 = Levin | first10 = T. N. | last11 = Lincoff | first11 = A. M. | last12 = Peterson | first12 = E. D. | last13 = Theroux | first13 = P. | last14 = Wenger | first14 = N. K. | last15 = Wright | first15 = R. S. | title = ACC/AHA 2007 Guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction): Developed in Collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons: Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine | journal = Circulation | volume = 116 | issue = 7 | pages = 803–877 | year = 2007 | doi-access = free }}</ref>
LVH may be a factor in determining treatment or diagnosis for other conditions, for example, LVH is used in the staging and risk stratification of Non-ischemic cardiomyopathies such as Fabry's Disease.<ref>{{cite journal |last1=Tower-Rader |first1=Albree |last2=Jaber |first2=Wael A. |title=Multimodality Imaging Assessment of Fabry Disease |journal=Circulation: Cardiovascular Imaging |date=1 November 2019 |volume=12 |issue=11 |pages=e009013 |doi=10.1161/CIRCIMAGING.119.009013 |url=https://doi.org/10.1161/CIRCIMAGING.119.009013|doi-access=free }}</ref> Patients with LVH may have to participate in more complicated and precise diagnostic procedures, such as Echocardiography or Cardiac MRI.<ref name="ASNCfive">{{Citation|author1=American Society of Nuclear Cardiology |author1-link=American Society of Nuclear Cardiology |title=Five Things Physicians and Patients Should Question |publisher=American Society of Nuclear Cardiology |work=Choosing Wisely: an initiative of the [[ABIM Foundation]] |url=http://choosingwisely.org/wp-content/uploads/2012/04/5things_12_factsheet_Amer_Soc_Nuc_Cardio.pdf |access-date=August 17, 2012 |url-status=dead |archive-url=https://web.archive.org/web/20120416220538/http://choosingwisely.org/wp-content/uploads/2012/04/5things_12_factsheet_Amer_Soc_Nuc_Cardio.pdf |archive-date=April 16, 2012 }}</ref><ref name="2007manage">{{Cite journal | last1 = Anderson | first1 = J. L. | last2 = Adams | first2 = C. D. | last3 = Antman | first3 = E. M. | last4 = Bridges | first4 = C. R. | last5 = Califf | first5 = R. M. | last6 = Casey | first6 = D. E. | last7 = Chavey | first7 = W. E. | last8 = Fesmire | first8 = F. M. | last9 = Hochman | first9 = J. S. | doi = 10.1161/CIRCULATIONAHA.107.185752 | last10 = Levin | first10 = T. N. | last11 = Lincoff | first11 = A. M. | last12 = Peterson | first12 = E. D. | last13 = Theroux | first13 = P. | last14 = Wenger | first14 = N. K. | last15 = Wright | first15 = R. S. | title = ACC/AHA 2007 Guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction): Developed in Collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons: Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine | journal = Circulation | volume = 116 | issue = 7 | pages = 803–877 | year = 2007 | doi-access = }}</ref>


==See also==
==See also==

Revision as of 22:04, 18 August 2023

Left ventricular hypertrophy
A heart with left ventricular hypertrophy in short-axis view
SpecialtyCardiology
ComplicationsHypertrophic cardiomyopathy, Heart failure[1]
Diagnostic methodEchocardiography, cardiovascular MRI[1]
Differential diagnosisAthletic heart syndrome

Left ventricular hypertrophy (LVH) is thickening of the heart muscle of the left ventricle of the heart, that is, left-sided ventricular hypertrophy and resulting increased left ventricular mass.

Causes

While ventricular hypertrophy occurs naturally as a reaction to aerobic exercise and strength training, it is most frequently referred to as a pathological reaction to cardiovascular disease, or high blood pressure.[2] It is one aspect of ventricular remodeling.

While LVH itself is not a disease, it is usually a marker for disease involving the heart.[3] Disease processes that can cause LVH include any disease that increases the afterload that the heart has to contract against, and some primary diseases of the muscle of the heart.[citation needed] Causes of increased afterload that can cause LVH include aortic stenosis, aortic insufficiency and hypertension. Primary disease of the muscle of the heart that cause LVH are known as hypertrophic cardiomyopathies, which can lead into heart failure.[citation needed]

Long-standing mitral insufficiency also leads to LVH as a compensatory mechanism.[citation needed]

Associated genes include OGN, osteoglycin.[4]

Diagnosis

The commonly used method to diagnose LVH is echocardiography, with which the thickness of the muscle of the heart can be measured. The electrocardiogram (ECG) often shows signs of increased voltage from the heart in individuals with LVH, so this is often used as a screening test to determine who should undergo further testing.[citation needed]

Echocardiography

Left ventricular hypertrophy grading
by posterior wall thickness[5]
Mild 12 to 13 mm
Moderate >13 to 17 mm
Severe >17 mm

Two dimensional echocardiography can produce images of the left ventricle. The thickness of the left ventricle as visualized on echocardiography correlates with its actual mass. Left ventricular mass can be further estimated based on geometric assumptions of ventricular shape using the measured wall thickness and internal diameter.[6] Average thickness of the left ventricle, with numbers given as 95% prediction interval for the short axis images at the mid-cavity level are:[7]

  • Women: 4 – 8 mm
  • Men: 5 – 9 mm

CT & MRI

CT and MRI-based measurement can be used to measure the left ventricle in three dimensions and calculate left ventricular mass directly. MRI based measurement is considered the “gold standard” for left ventricular mass,[8] though is usually not readily available for common practice. In older individuals, age related remodeling of the left ventricle's geometry can lead to a discordancy between CT and echocardiographic based measurements of left ventricular mass.[9]

ECG criteria

Left ventricular hypertrophy with secondary repolarization abnormalities as seen on ECG
Histopathology of (a) normal myocardium and (b) myocardial hypertrophy. Scale bar indicates 50 μm.
Gross pathology of left ventricular hypertrophy. Left ventricle is at right in image, serially sectioned from apex to near base.

There are several sets of criteria used to diagnose LVH via electrocardiography.[10] None of them are perfect, though by using multiple criteria sets, the sensitivity and specificity are increased.

The Sokolow-Lyon index:[11][12]

  • S in V1 + R in V5 or V6 (whichever is larger) ≥ 35 mm (≥ 7 large squares)
  • R in aVL ≥ 11 mm

The Cornell voltage criteria[13] for the ECG diagnosis of LVH involve measurement of the sum of the R wave in lead aVL and the S wave in lead V3. The Cornell criteria for LVH are:

  • S in V3 + R in aVL > 28 mm (men)
  • S in V3 + R in aVL > 20 mm (women)

The Romhilt-Estes point score system ("diagnostic" >5 points; "probable" 4 points):

ECG Criteria Points
Voltage Criteria (any of):
  1. R or S in limb leads ≥20 mm
  2. S in V1 or V2 ≥30 mm
  3. R in V5 or V6 ≥30 mm
3
ST-T Abnormalities:
  • ST-T vector opposite to QRS without digitalis
  • ST-T vector opposite to QRS with digitalis

3
1

Negative terminal P mode in V1 1 mm in depth and 0.04 sec in duration (indicates left atrial enlargement) 3
Left axis deviation (QRS of −30° or more) 2
QRS duration ≥0.09 sec 1
Delayed intrinsicoid deflection in V5 or V6 (>0.05 sec) 1

Other voltage-based criteria for LVH include:

  • Lead I: R wave > 14 mm
  • Lead aVR: S wave > 15 mm
  • Lead aVL: R wave > 12 mm
  • Lead aVF: R wave > 21 mm
  • Lead V5: R wave > 26 mm
  • Lead V6: R wave > 20 mm

Treatment

Treatment is typically focused on resolving the cause of the LVH with the enlargement not permanent in all cases. In some cases the growth can regress with the reduction of blood pressure.[14]

LVH may be a factor in determining treatment or diagnosis for other conditions, for example, LVH is used in the staging and risk stratification of Non-ischemic cardiomyopathies such as Fabry's Disease.[15] Patients with LVH may have to participate in more complicated and precise diagnostic procedures, such as Echocardiography or Cardiac MRI.[16][17]

See also

References

  1. ^ a b Maron, Barry J; Maron, Martin S (2013-01-19). "Hypertrophic cardiomyopathy". Lancet. 381 (9862). Elsevier BV: 242–255. doi:10.1016/s0140-6736(12)60397-3. ISSN 0140-6736. PMID 22874472. S2CID 38333896.
  2. ^ "Ask the doctor: Left Ventricular Hypertrophy". Retrieved 2007-12-07.
  3. ^ Meijs MF, Bots ML, Vonken EJ, et al. (2007). "Rationale and design of the SMART Heart study: A prediction model for left ventricular hypertrophy in hypertension". Neth Heart J. 15 (9): 295–8. doi:10.1007/BF03086003. PMC 1995099. PMID 18030317.
  4. ^ Petretto E, Sarwar R, Grieve I, Lu H, Kumaran MK, Muckett PJ, Mangion J, Schroen B, Benson M, Punjabi PP, Prasad SK, Pennell DJ, Kiesewetter C, Tasheva ES, Corpuz LM, Webb MD, Conrad GW, Kurtz TW, Kren V, Fischer J, Hubner N, Pinto YM, Pravenec M, Aitman TJ, Cook SA (May 2008). "Integrated genomic approaches implicate osteoglycin (Ogn) in the regulation of left ventricular mass". Nat. Genet. 40 (5): 546–52. doi:10.1038/ng.134. PMC 2742198. PMID 18443592.
  5. ^ Goland, Sorel; Czer, Lawrence S.C.; Kass, Robert M.; Siegel, Robert J.; Mirocha, James; De Robertis, Michele A.; Lee, Jason; Raissi, Sharo; Cheng, Wen; Fontana, Gregory; Trento, Alfredo (2008). "Use of Cardiac Allografts With Mild and Moderate Left Ventricular Hypertrophy Can Be Safely Used in Heart Transplantation to Expand the Donor Pool". Journal of the American College of Cardiology. 51 (12): 1214–1220. doi:10.1016/j.jacc.2007.11.052. ISSN 0735-1097. PMID 18355661.
  6. ^ Lang, Roberto M.; Badano, Luigi P.; Mor-Avi, Victor; Afilalo, Jonathan; Armstrong, Anderson; Ernande, Laura; Flachskampf, Frank A.; Foster, Elyse; Goldstein, Steven A.; Kuznetsova, Tatiana; Lancellotti, Patrizio; Muraru, Denisa; Picard, Michael H.; Rietzschel, Ernst R.; Rudski, Lawrence (January 2015). "Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging". Journal of the American Society of Echocardiography. 28 (1): 1–39.e14. doi:10.1016/j.echo.2014.10.003. hdl:1854/LU-5953422. ISSN 1097-6795. PMID 25559473.
  7. ^ Kawel, Nadine; Turkbey, Evrim B.; Carr, J. Jeffrey; Eng, John; Gomes, Antoinette S.; Hundley, W. Gregory; Johnson, Craig; Masri, Sofia C.; Prince, Martin R.; van der Geest, Rob J.; Lima, João A.C.; Bluemke, David A. (2012). "Normal Left Ventricular Myocardial Thickness for Middle-Aged and Older Subjects With Steady-State Free Precession Cardiac Magnetic Resonance". Circulation: Cardiovascular Imaging. 5 (4): 500–508. doi:10.1161/CIRCIMAGING.112.973560. ISSN 1941-9651. PMC 3412148. PMID 22705587.
  8. ^ Myerson, Saul G.; Bellenger, Nicholas G.; Pennell, Dudley J. (2002-03-01). "Assessment of Left Ventricular Mass by Cardiovascular Magnetic Resonance". Hypertension. 39 (3): 750–755. doi:10.1161/hy0302.104674. PMID 11897757. S2CID 16598370.
  9. ^ Stokar, Joshua; Leibowitz, David; Durst, Ronen; Shaham, Dorith; Zwas, Donna R. (2019-10-24). "Echocardiography overestimates LV mass in the elderly as compared to cardiac CT". PLOS ONE. 14 (10): e0224104. Bibcode:2019PLoSO..1424104S. doi:10.1371/journal.pone.0224104. ISSN 1932-6203. PMC 6812823. PMID 31648248.
  10. ^ "Lesson VIII - Ventricular Hypertrophy". Retrieved 2009-01-07.
  11. ^ Sokolow M, Lyon TP (1949). "The ventricular complex in left ventricular hypertrophy as obtained by unipolar precordial and limb leads". Am Heart J. 37 (2): 161–186. doi:10.1016/0002-8703(49)90562-1. PMID 18107386.
  12. ^ Okin, Peter M.; Roman, Mary J.; Devereux, Richard B.; Pickering, Thomas G.; Borer, Jeffrey S.; Kligfield, Paul (1998). "Time-Voltage QRS Area of the 12-Lead Electrocardiogram : Detection of Left Ventricular Hypertrophy". Hypertension. 31 (4): 937–942. CiteSeerX 10.1.1.503.8356. doi:10.1161/01.HYP.31.4.937. PMID 9535418. S2CID 2662286. Retrieved 2007-12-07.
  13. ^ Casale PN, Devereux RB, Alonso DR, Campo E, Kligfield P (1987). "Improved sex-specific criteria of left ventricular hypertrophy for clinical and computer interpretation of electrocardiograms: validation with autopsy findings". Circulation. 75 (3): 565–72. doi:10.1161/01.CIR.75.3.565. PMID 2949887.
  14. ^ Gradman AH, Alfayoumi F (2006). "From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease". Prog Cardiovasc Dis. 48 (5): 326–41. doi:10.1016/j.pcad.2006.02.001. PMID 16627048.
  15. ^ Tower-Rader, Albree; Jaber, Wael A. (1 November 2019). "Multimodality Imaging Assessment of Fabry Disease". Circulation: Cardiovascular Imaging. 12 (11): e009013. doi:10.1161/CIRCIMAGING.119.009013.
  16. ^ American Society of Nuclear Cardiology, "Five Things Physicians and Patients Should Question" (PDF), Choosing Wisely: an initiative of the ABIM Foundation, American Society of Nuclear Cardiology, archived from the original (PDF) on April 16, 2012, retrieved August 17, 2012
  17. ^ Anderson, J. L.; Adams, C. D.; Antman, E. M.; Bridges, C. R.; Califf, R. M.; Casey, D. E.; Chavey, W. E.; Fesmire, F. M.; Hochman, J. S.; Levin, T. N.; Lincoff, A. M.; Peterson, E. D.; Theroux, P.; Wenger, N. K.; Wright, R. S. (2007). "ACC/AHA 2007 Guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 2002 Guidelines for the Management of Patients with Unstable Angina/Non-ST-Elevation Myocardial Infarction): Developed in Collaboration with the American College of Emergency Physicians, the Society for Cardiovascular Angiography and Interventions, and the Society of Thoracic Surgeons: Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation and the Society for Academic Emergency Medicine". Circulation. 116 (7): 803–877. doi:10.1161/CIRCULATIONAHA.107.185752.