Jump to content

Template:Numbered block/doc: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 1220907518 by Justin545 (talk)
cleanup
Line 2: Line 2:
This template creates a numbered block which is usually used to number mathematical formulae. This template can be used together with {{tl|EquationRef}} and {{tl|EquationNote}} to produce nicely formatted numbered equations if a back reference to an equation is wanted.
This template creates a numbered block which is usually used to number mathematical formulae. This template can be used together with {{tl|EquationRef}} and {{tl|EquationNote}} to produce nicely formatted numbered equations if a back reference to an equation is wanted.


== Parameters ==
== Usage ==
Command: <nowiki>{{NumBlk|<1>|<2>|<3>|RawN=<>|LnSty=<>|Border=<>}}</nowiki>
{{tlx|Numbered block|<1>|<2>|<3>|RawN{{=}}<>|LnSty{{=}}<>|Border{{=}}<>}}


== Parameters ==
Parameters <nowiki>{{{1}}}</nowiki>, <nowiki>{{{2}}}</nowiki>, and <nowiki>{{{3}}}</nowiki> of this template are required. In addition, there are three optional parameters <nowiki>{{{RawN}}}</nowiki>, <nowiki>{{{LnSty}}}</nowiki> and <nowiki>{{{Border}}}</nowiki>.
Parameters {{para|1}}, {{para|2}}, and {{para|3}} of this template are required. In addition, there are three optional parameters {{para|RawN}}, {{para|LnSty}} and {{para|Border}}.
:'''<nowiki>{{{1}}}</nowiki>''': Specify indentation. The more colons (:) you put, the further indented the block will be, up to a limit of 20. This parameter can be empty if no indentation is needed.
* {{para|1}}: Specify indentation. The more colons (:) you put, the further indented the block will be, up to a limit of 20. This parameter can be empty if no indentation is needed.
:'''<nowiki>{{{2}}}</nowiki>''': The body or content of the block.
:'''<nowiki>{{{3}}}</nowiki>''': Specify the block number.
* {{para|2}}: The body or content of the block.
:'''<nowiki>{{{RawN}}}</nowiki>''': If a non-empty non-whitespace value, no extra formatting will be applied to the block number.
* {{para|3}}: Specify the block number.
* {{para|RawN}}: If a non-empty non-whitespace value, no extra formatting will be applied to the block number.
:'''<nowiki>{{{LnSty}}}</nowiki>''': Specify the line style.
* {{para|LnSty}}: Specify the line style.
:'''<nowiki>{{{Border}}}</nowiki>''': If set, put a box around the equation. (Experimental.)
* {{para|Border}}: If set, put a box around the equation. (Experimental.)


== Examples ==
== Examples ==
Line 19: Line 20:
|-
|-
|style="width:55%;"|
|style="width:55%;"|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|:|<math>y=ax+b</math>|Eq. 3}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|:|<math>y=ax+b</math>|Eq. 3}}</syntaxhighlight>
|style="width:45%;"|
|style="width:45%;"|
{{NumBlk|:|<math>y=ax+b</math>|Eq. 3}}
{{Numbered block|:|<math>y=ax+b</math>|Eq. 3}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|:|<math>ax^2+bx+c=0</math>|Eq. 3}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|:|<math>ax^2+bx+c=0</math>|Eq. 3}}</syntaxhighlight>
|
|
{{NumBlk|:|<math>ax^2+bx+c=0</math>|Eq. 3}}
{{Numbered block|:|<math>ax^2+bx+c=0</math>|Eq. 3}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|:|<math>\Psi(x_1,x_2)=U(x_1)V(x_2)</math>|2}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|:|<math>\Psi(x_1,x_2)=U(x_1)V(x_2)</math>|2}}</syntaxhighlight>
|
|
{{NumBlk|:|<math>\Psi(x_1,x_2)=U(x_1)V(x_2)</math>|2}}
{{Numbered block|:|<math>\Psi(x_1,x_2)=U(x_1)V(x_2)</math>|2}}
|-
|-
!colspan="2"|
!colspan="2"|
Line 37: Line 38:
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk||<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3.5}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block||<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3.5}}</syntaxhighlight>
|
|
{{NumBlk||<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3.5}}
{{Numbered block||<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3.5}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|:|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|:|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1}}</syntaxhighlight>
|
|
{{NumBlk|:|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1}}
{{Numbered block|:|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|13.7}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|13.7}}</syntaxhighlight>
|
|
{{NumBlk|::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|13.7}}
{{Numbered block|::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|13.7}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|:::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1.2}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|:::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1.2}}</syntaxhighlight>
|
|
{{NumBlk|:::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1.2}}
{{Numbered block|:::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1.2}}
|-
|-
!colspan="2"|
!colspan="2"|
Line 60: Line 61:
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=3.5|RawN=.}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=3.5|RawN=.}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=3.5|RawN=.}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=3.5|RawN=.}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<3.5>|RawN=.}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<3.5>|RawN=.}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<3.5>|RawN=.}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<3.5>|RawN=.}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=[3.5]|RawN=.}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=[3.5]|RawN=.}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=[3.5]|RawN=.}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=[3.5]|RawN=.}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3='''[3.5]'''|RawN=.}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3='''[3.5]'''|RawN=.}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3='''[3.5]'''|RawN=.}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3='''[3.5]'''|RawN=.}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<math>(3.5)</math>|RawN=.}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<math>(3.5)</math>|RawN=.}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<math>(3.5) \,</math>|RawN=.}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<math>(3.5) \,</math>|RawN=.}}
|-
|-
!colspan="2"|
!colspan="2"|
Line 98: Line 99:
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=1px dashed red}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=1px dashed red}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=1px dashed red}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=1px dashed red}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=3px dashed #0a7392}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=3px dashed #0a7392}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=3px dashed #0a7392}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=3px dashed #0a7392}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px solid green}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px solid green}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px solid green}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px solid green}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px dotted blue}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px dotted blue}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px dotted blue}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px dotted blue}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=0px solid green}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=0px solid green}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=0px solid green}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=0px solid green}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px none green}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px none green}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px none green}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px none green}}
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px double green}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px double green}}</syntaxhighlight>
|
|
{{NumBlk|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px double #f4c300}}
{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px double #f4c300}}
|-
|-
!colspan="2"|
!colspan="2"|
Line 153: Line 154:
<syntaxhighlight lang="wikitext">
<syntaxhighlight lang="wikitext">
The following equations
The following equations
{{NumBlk|:|<math>3x+2y-z=1</math>|1}}
{{Numbered block|:|<math>3x+2y-z=1</math>|1}}
{{NumBlk|:|<math>2x-2y+4z=-2</math>|2}}
{{Numbered block|:|<math>2x-2y+4z=-2</math>|2}}
{{NumBlk|:|<math>-2x+y-2z=0</math>|3}}
{{Numbered block|:|<math>-2x+y-2z=0</math>|3}}
form a system of three equations.
form a system of three equations.
</syntaxhighlight>
</syntaxhighlight>
|
|
The following equations
The following equations
{{NumBlk|:|<math>3x+2y-z=1</math>|1}}
{{Numbered block|:|<math>3x+2y-z=1</math>|1}}
{{NumBlk|:|<math>2x-2y+4z=-2</math>|2}}
{{Numbered block|:|<math>2x-2y+4z=-2</math>|2}}
{{NumBlk|:|<math>-2x+y-2z=0</math>|3}}
{{Numbered block|:|<math>-2x+y-2z=0</math>|3}}
form a system of three equations.
form a system of three equations.
|-
|-
Line 169: Line 170:
The following equations
The following equations
<div style="line-height: 0;">
<div style="line-height: 0;">
{{NumBlk|:|<math>3x+2y-z=1</math>|1}}
{{Numbered block|:|<math>3x+2y-z=1</math>|1}}
{{NumBlk|:|<math>2x-2y+4z=-2</math>|2}}
{{Numbered block|:|<math>2x-2y+4z=-2</math>|2}}
{{NumBlk|:|<math>-2x+y-2z=0</math>|3}}
{{Numbered block|:|<math>-2x+y-2z=0</math>|3}}
</div>
</div>
form a system of three equations.
form a system of three equations.
Line 178: Line 179:
The following equations
The following equations
<div style="line-height: 0;">
<div style="line-height: 0;">
{{NumBlk|:|<math>3x+2y-z=1</math>|1}}
{{Numbered block|:|<math>3x+2y-z=1</math>|1}}
{{NumBlk|:|<math>2x-2y+4z=-2</math>|2}}
{{Numbered block|:|<math>2x-2y+4z=-2</math>|2}}
{{NumBlk|:|<math>-2x+y-2z=0</math>|3}}
{{Numbered block|:|<math>-2x+y-2z=0</math>|3}}
</div>
</div>
form a system of three equations.
form a system of three equations.
Line 188: Line 189:
The following equations
The following equations
<div style="line-height: 0;">
<div style="line-height: 0;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>3x+2y-z=1</math>|1}}
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
form a system of three equations.
form a system of three equations.
Line 197: Line 198:
The following equations
The following equations
<div style="line-height: 0;">
<div style="line-height: 0;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>3x+2y-z=1</math>|1}}
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
form a system of three equations.
form a system of three equations.
Line 207: Line 208:
The following equations
The following equations
<div style="line-height: 0; margin-left: 1.6em;">
<div style="line-height: 0; margin-left: 1.6em;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>3x+2y-z=1</math>|1}}
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
form a system of three equations.
form a system of three equations.
Line 216: Line 217:
The following equations
The following equations
<div style="line-height: 0; margin-left: 1.6em;">
<div style="line-height: 0; margin-left: 1.6em;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>3x+2y-z=1</math>|1}}
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
form a system of three equations.
form a system of three equations.
Line 244: Line 245:
The following equations
The following equations
<div style="line-height: 0; margin-left: 1.6em;">
<div style="line-height: 0; margin-left: 1.6em;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>3x+2y-z=1</math>|1}}
<div style="margin-left: 1.6em;">
<div style="margin-left: 1.6em;">
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
<div style="margin-left: 1.6em;">
<div style="margin-left: 1.6em;">
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
</div>
</div>
Line 257: Line 258:
The following equations
The following equations
<div style="line-height: 0; margin-left: 1.6em;">
<div style="line-height: 0; margin-left: 1.6em;">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>3x+2y-z=1</math>|1}}
<div style="margin-left: 1.6em;">
<div style="margin-left: 1.6em;">
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
<div style="margin-left: 1.6em;">
<div style="margin-left: 1.6em;">
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
</div>
</div>
Line 272: Line 273:
<div style="line-height: 0;">
<div style="line-height: 0;">
<div style="margin-left: calc(1.6em * 1);">
<div style="margin-left: calc(1.6em * 1);">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>3x+2y-z=1</math>|1}}
</div>
</div>
<div style="margin-left: calc(1.6em * 2);">
<div style="margin-left: calc(1.6em * 2);">
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
</div>
</div>
<div style="margin-left: calc(1.6em * 3);">
<div style="margin-left: calc(1.6em * 3);">
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
</div>
</div>
Line 287: Line 288:
<div style="line-height: 0;">
<div style="line-height: 0;">
<div style="margin-left: calc(1.6em * 1);">
<div style="margin-left: calc(1.6em * 1);">
{{NumBlk||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>3x+2y-z=1</math>|1}}
</div>
</div>
<div style="margin-left: calc(1.6em * 2);">
<div style="margin-left: calc(1.6em * 2);">
{{NumBlk||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
</div>
</div>
<div style="margin-left: calc(1.6em * 3);">
<div style="margin-left: calc(1.6em * 3);">
{{NumBlk||<math>-2x+y-2z=0</math>|3}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
</div>
</div>
Line 314: Line 315:
|
|
<syntaxhighlight lang="wikitext">
<syntaxhighlight lang="wikitext">
* {{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}
* {{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}
* {{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}
* {{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}
* {{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}
* {{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}
</syntaxhighlight>
</syntaxhighlight>
|
|
* {{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}
* {{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}
* {{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}
* {{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}
* {{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}
* {{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}
|-
|-
|
|
<syntaxhighlight lang="wikitext">
<syntaxhighlight lang="wikitext">
<ul style="line-height: 0;">
<ul style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>
</ul>
</syntaxhighlight>
</syntaxhighlight>
|
|
<ul style="line-height: 0;">
<ul style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>
</ul>
|-
|-
Line 341: Line 342:
<syntaxhighlight lang="wikitext">
<syntaxhighlight lang="wikitext">
<ul style="line-height: 0;">
<ul style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>
</ul>
</syntaxhighlight>
</syntaxhighlight>
|
|
<ul style="line-height: 0;">
<ul style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>
</ul>
|-
|-
Line 369: Line 370:
|
|
<syntaxhighlight lang="wikitext">
<syntaxhighlight lang="wikitext">
# {{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}
# {{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}
# {{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}
# {{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}
# {{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}
# {{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}
</syntaxhighlight>
</syntaxhighlight>
|
|
# {{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}
# {{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}
# {{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}
# {{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}
# {{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}
# {{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}
|-
|-
|
|
<syntaxhighlight lang="wikitext">
<syntaxhighlight lang="wikitext">
<ol style="line-height: 0;">
<ol style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>
</ol>
</syntaxhighlight>
</syntaxhighlight>
|
|
<ol style="line-height: 0;">
<ol style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>
</ol>
|-
|-
Line 396: Line 397:
<syntaxhighlight lang="wikitext">
<syntaxhighlight lang="wikitext">
<ol style="line-height: 0;">
<ol style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>
</ol>
</syntaxhighlight>
</syntaxhighlight>
|
|
<ol style="line-height: 0;">
<ol style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{NumBlk||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>
</ol>
|-
|-
Line 412: Line 413:
|-
|-
|
|
<syntaxhighlight lang="wikitext" inline>{{NumBlk|:|<math>y=ax+b</math>|Eq. 3|Border=1}}</syntaxhighlight>
<syntaxhighlight lang="wikitext" inline>{{Numbered block|:|<math>y=ax+b</math>|Eq. 3|Border=1}}</syntaxhighlight>
|
|
{{NumBlk|:|<math>y=ax+b</math>|Eq. 3|Border=1}}
{{Numbered block|:|<math>y=ax+b</math>|Eq. 3|Border=1}}
|}
|}


Line 423: Line 424:
| <syntaxhighlight lang="wikitext">
| <syntaxhighlight lang="wikitext">
<div style="line-height:0;">
<div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
</div>
</div>
</syntaxhighlight>
</syntaxhighlight>
Line 433: Line 434:
! Renders as
! Renders as
| <div style="line-height:0;">
| <div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
</div>
</div>
|}
|}
Line 446: Line 447:
| <syntaxhighlight lang="wikitext">
| <syntaxhighlight lang="wikitext">
<div style="line-height:0;">
<div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
</div>
</syntaxhighlight>
</syntaxhighlight>
Line 456: Line 457:
! Renders as
! Renders as
| <div style="line-height:0;">
| <div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
</div>
|}
|}
Line 469: Line 470:
| <syntaxhighlight lang="wikitext">
| <syntaxhighlight lang="wikitext">
<div style="line-height:0;">
<div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex none Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex none Gainsboro}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex none Gainsboro}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex none Gainsboro}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
</div>
</syntaxhighlight>
</syntaxhighlight>
Line 479: Line 480:
! Renders as
! Renders as
| <div style="line-height:0;">
| <div style="line-height:0;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex none Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex none Gainsboro}}
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex none Gainsboro}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex none Gainsboro}}
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
</div>
|}
|}
Line 493: Line 494:
<div style="line-height:0;">
<div style="line-height:0;">
<div style="background-color: Beige;">
<div style="background-color: Beige;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
</div> <div style="background-color: none;">
</div> <div style="background-color: none;">
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
</div> <div style="background-color: Beige;">
</div> <div style="background-color: Beige;">
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
</div> <div style="background-color: none;">
</div> <div style="background-color: none;">
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
</div> <div style="background-color: Beige;">
</div> <div style="background-color: Beige;">
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
</div>
</div>
</div>
</div>
Line 509: Line 510:
| <div style="line-height:0;">
| <div style="line-height:0;">
<div style="background-color: Beige;">
<div style="background-color: Beige;">
{{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
</div> <div style="background-color: none;">
</div> <div style="background-color: none;">
{{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
</div> <div style="background-color: Beige;">
</div> <div style="background-color: Beige;">
{{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
</div> <div style="background-color: none;">
</div> <div style="background-color: none;">
{{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
</div> <div style="background-color: Beige;">
</div> <div style="background-color: Beige;">
{{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
</div>
</div>
</div>
</div>
Line 530: Line 531:
{| class="hover-highlight" style="line-height:0; width: 100%; border-collapse: collapse; margin: 0; padding: 0;"
{| class="hover-highlight" style="line-height:0; width: 100%; border-collapse: collapse; margin: 0; padding: 0;"
|-
|-
| {{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
| {{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
|-
|-
| {{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
| {{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
|-
|-
| {{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
| {{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
|-
|-
| {{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
| {{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
|-
|-
| {{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
| {{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
|}
|}
</syntaxhighlight>
</syntaxhighlight>
Line 548: Line 549:
{| class="hover-highlight" style="line-height:0; width: 100%; border-collapse: collapse; margin: 0; padding: 0;"
{| class="hover-highlight" style="line-height:0; width: 100%; border-collapse: collapse; margin: 0; padding: 0;"
|-
|-
| {{NumBlk|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
| {{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
|-
|-
| {{NumBlk|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
| {{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
|-
|-
| {{NumBlk|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
| {{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
|-
|-
| {{NumBlk|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
| {{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
|-
|-
| {{NumBlk|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
| {{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
|}
|}
|}
|}
Line 571: Line 572:
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
the probabilities of the presence of various diseases.
{{NumBlk|1=:|2=<math>
{{Numbered block|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}</nowiki>
</math>,|3='''Eq.(6)'''|RawN=.}}</nowiki>
Line 581: Line 582:
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
the probabilities of the presence of various diseases.
{{NumBlk|1=:|2=<math>
{{Numbered block|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}
</math>,|3='''Eq.(6)'''|RawN=.}}
Line 595: Line 596:
the probabilities of the presence of various diseases.
the probabilities of the presence of various diseases.
{{clear}}
{{clear}}
{{NumBlk|1=:|2=<math>
{{Numbered block|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}</nowiki>
</math>,|3='''Eq.(6)'''|RawN=.}}</nowiki>
Line 606: Line 607:
the probabilities of the presence of various diseases.
the probabilities of the presence of various diseases.
{{clear}}
{{clear}}
{{NumBlk|1=:|2=<math>
{{Numbered block|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}
</math>,|3='''Eq.(6)'''|RawN=.}}
Line 614: Line 615:
== Table caveat ==
== Table caveat ==


Because <code><nowiki>{{NumBlk}}</nowiki></code> is implemented as a table, putting <code><nowiki>{{NumBlk}}</nowiki></code> within a table yields a [[Help:Table#Nested_tables|nested table]]. Due to a bug in [[MediaWiki]]'s handling of nested tables, {{tl|NumBlk}} must be used carefully in this case. In particular, when indentation for the outer table is desired, use explicit {{tag|dl|content={{tag|dd}}}} tags for indentation instead of a leading colon (:).
Because <code><nowiki>{{Numbered block}}</nowiki></code> is implemented as a table, putting <code><nowiki>{{Numbered block}}</nowiki></code> within a table yields a [[Help:Table#Nested_tables|nested table]]. Due to a bug in [[MediaWiki]]'s handling of nested tables, {{tl|Numbered block}} must be used carefully in this case. In particular, when indentation for the outer table is desired, use explicit {{tag|dl|content={{tag|dd}}}} tags for indentation instead of a leading colon (:).


For example,
For example,
Line 621: Line 622:
{|
{|
|<math>(f * g)[n]\,</math>&nbsp; &nbsp; &nbsp;
|<math>(f * g)[n]\,</math>&nbsp; &nbsp; &nbsp;
|{{NumBlk||<math>\stackrel{\mathrm{def}}{=}\sum_{m=-\infty}^{\infty} f[m]\cdot g[n - m]\,</math>|
|{{Numbered block||<math>\stackrel{\mathrm{def}}{=}\sum_{m=-\infty}^{\infty} f[m]\cdot g[n - m]\,</math>|
3=<span style="color:darkred">'''(Eq.1)'''</span>|RawN=.}}
3=<span style="color:darkred">'''(Eq.1)'''</span>|RawN=.}}
|-
|-
Line 633: Line 634:
{{(}}{{!}}
{{(}}{{!}}
{{!}}<math>(f * g)[n]\,</math>&nbsp; &nbsp; &nbsp;
{{!}}<math>(f * g)[n]\,</math>&nbsp; &nbsp; &nbsp;
{{!}}{{NumBlk||<math>\stackrel{\mathrm{def}}{=}\sum_{m=-\infty}^{\infty} f[m]\cdot g[n - m]\,</math>|
{{!}}{{Numbered block||<math>\stackrel{\mathrm{def}}{=}\sum_{m=-\infty}^{\infty} f[m]\cdot g[n - m]\,</math>|
3=<span style="color:darkred">'''(Eq.1)'''</span>|RawN=.}}
3=<span style="color:darkred">'''(Eq.1)'''</span>|RawN=.}}
{{!}}-
{{!}}-
Line 654: Line 655:
|-
|-
|The first parameter for indentation still works when used inside table.
|The first parameter for indentation still works when used inside table.
{{NumBlk|::::|<math>ax^2+bx+c=0</math>|Level 4}}
{{Numbered block|::::|<math>ax^2+bx+c=0</math>|Level 4}}
{{NumBlk|:::|<math>ax^2+bx+c=0</math>|Level 3}}
{{Numbered block|:::|<math>ax^2+bx+c=0</math>|Level 3}}
{{NumBlk|::|<math>ax^2+bx+c=0</math>|Level 2}}
{{Numbered block|::|<math>ax^2+bx+c=0</math>|Level 2}}
{{NumBlk|:|<math>ax^2+bx+c=0</math>|Level 1}}
{{Numbered block|:|<math>ax^2+bx+c=0</math>|Level 1}}
{{NumBlk||<math>ax^2+bx+c=0</math>|Level 0}}
{{Numbered block||<math>ax^2+bx+c=0</math>|Level 0}}
|-
|-
|}
|}
Line 670: Line 671:
|-
|-
|The first parameter for indentation still works when used inside table.
|The first parameter for indentation still works when used inside table.
{{NumBlk|::::|<math>ax^2+bx+c=0</math>|Level 4}}
{{Numbered block|::::|<math>ax^2+bx+c=0</math>|Level 4}}
{{NumBlk|:::|<math>ax^2+bx+c=0</math>|Level 3}}
{{Numbered block|:::|<math>ax^2+bx+c=0</math>|Level 3}}
{{NumBlk|::|<math>ax^2+bx+c=0</math>|Level 2}}
{{Numbered block|::|<math>ax^2+bx+c=0</math>|Level 2}}
{{NumBlk|:|<math>ax^2+bx+c=0</math>|Level 1}}
{{Numbered block|:|<math>ax^2+bx+c=0</math>|Level 1}}
{{NumBlk||<math>ax^2+bx+c=0</math>|Level 0}}
{{Numbered block||<math>ax^2+bx+c=0</math>|Level 0}}
|-
|-
|}
|}

Revision as of 12:37, 5 May 2024

This template creates a numbered block which is usually used to number mathematical formulae. This template can be used together with {{EquationRef}} and {{EquationNote}} to produce nicely formatted numbered equations if a back reference to an equation is wanted.

Usage

{{Numbered block|<1>|<2>|<3>|RawN=<>|LnSty=<>|Border=<>}}

Parameters

Parameters |1=, |2=, and |3= of this template are required. In addition, there are three optional parameters |RawN=, |LnSty= and |Border=.

  • |1=: Specify indentation. The more colons (:) you put, the further indented the block will be, up to a limit of 20. This parameter can be empty if no indentation is needed.
  • |2=: The body or content of the block.
  • |3=: Specify the block number.
  • |RawN=: If a non-empty non-whitespace value, no extra formatting will be applied to the block number.
  • |LnSty=: Specify the line style.
  • |Border=: If set, put a box around the equation. (Experimental.)

Examples

Equations may render HTML

{{Numbered block|:|<math>y=ax+b</math>|Eq. 3}}

{{Numbered block|:|<math>ax^2+bx+c=0</math>|Eq. 3}}

{{Numbered block|:|<math>\Psi(x_1,x_2)=U(x_1)V(x_2)</math>|2}}

Indentation

{{Numbered block||<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3.5}}

{{Numbered block|:|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1}}

{{Numbered block|::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|13.7}}

{{Numbered block|:::|<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|1.2}}

Formatting of equation number

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=3.5|RawN=.}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<3.5>|RawN=.}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=[3.5]|RawN=.}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3='''[3.5]'''|RawN=.}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<math>(3.5)</math>|RawN=.}}

Line style

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=1px dashed red}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''(3.5)'''</Big>|RawN=.|LnSty=3px dashed #0a7392}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px solid green}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px dotted blue}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=0px solid green}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=5px none green}}

{{Numbered block|1=:|2=<math>\mathbf{a}(t)=\frac{d}{dt}\mathbf{v}(t)</math>|3=<Big>'''[3.5]'''</Big>|RawN=.|LnSty=3px double green}}

Line height and indentation (1)

The following equations
:<math>3x+2y-z=1</math>
:<math>2x-2y+4z=-2</math>
:<math>-2x+y-2z=0</math>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
{{Numbered block|:|<math>3x+2y-z=1</math>|1}}
{{Numbered block|:|<math>2x-2y+4z=-2</math>|2}}
{{Numbered block|:|<math>-2x+y-2z=0</math>|3}}
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0;">
{{Numbered block|:|<math>3x+2y-z=1</math>|1}}
{{Numbered block|:|<math>2x-2y+4z=-2</math>|2}}
{{Numbered block|:|<math>-2x+y-2z=0</math>|3}}
</div>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0;">
{{Numbered block||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0; margin-left: 1.6em;">
{{Numbered block||<math>3x+2y-z=1</math>|1}}
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
form a system of three equations.

The following equations

form a system of three equations.

Line height and indentation (2)

The following equations
:<math>3x+2y-z=1</math>
::<math>2x-2y+4z=-2</math>
:::<math>-2x+y-2z=0</math>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0; margin-left: 1.6em;">
{{Numbered block||<math>3x+2y-z=1</math>|1}}
<div style="margin-left: 1.6em;">
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
<div style="margin-left: 1.6em;">
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
</div>
form a system of three equations.

The following equations

form a system of three equations.

The following equations
<div style="line-height: 0;">
<div style="margin-left: calc(1.6em * 1);">
{{Numbered block||<math>3x+2y-z=1</math>|1}}
</div>
<div style="margin-left: calc(1.6em * 2);">
{{Numbered block||<math>2x-2y+4z=-2</math>|2}}
</div>
<div style="margin-left: calc(1.6em * 3);">
{{Numbered block||<math>-2x+y-2z=0</math>|3}}
</div>
</div>
form a system of three equations.

The following equations

form a system of three equations.

Unordered list

* <math>3x+2y-z=1</math>
* <math>2x-2y+4z=-2</math>
* <math>-2x+y-2z=0</math>
* {{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}
* {{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}
* {{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}
<ul style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>
<ul style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ul>

Ordered list

# <math>3x+2y-z=1</math>
# <math>2x-2y+4z=-2</math>
# <math>-2x+y-2z=0</math>
# {{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}
# {{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}
# {{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}
<ol style="line-height: 0;">
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-block; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>
<ol style="line-height: 0;">
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>3x+2y-z=1</math>|Eq. 1}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>2x-2y+4z=-2</math>|Eq. 2}}</div></li>
<li><div style="display: inline-table; width: 100%; vertical-align: middle;">{{Numbered block||<math>-2x+y-2z=0</math>|Eq. 3}}</div></li>
</ol>

Border

{{Numbered block|:|<math>y=ax+b</math>|Eq. 3|Border=1}}

When content of the blocks and block numbers are far apart

Markup
 <div style="line-height:0;">
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
</div>
Renders as
Markup
<div style="line-height:0;">
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
Renders as
Markup
<div style="line-height:0;">
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2|LnSty=0.37ex none Gainsboro}}
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3|LnSty=0.37ex dotted Gainsboro}}
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4|LnSty=0.37ex none Gainsboro}}
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5|LnSty=0.37ex dotted Gainsboro}}
</div>
Renders as
Markup
<div style="line-height:0;">
<div style="background-color: Beige;">
{{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
</div> <div style="background-color: none;">
{{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
</div> <div style="background-color: Beige;">
{{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
</div> <div style="background-color: none;">
{{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
</div> <div style="background-color: Beige;">
{{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
</div>
</div>
Renders as
Markup
(mouse over the row you want to highlight)
{{row hover highlight}}
{| class="hover-highlight" style="line-height:0; width: 100%; border-collapse: collapse; margin: 0; padding: 0;"
|-
| {{Numbered block|1=:|2=<math>a^2 + b^2 = (a + b i) (a - b i)</math>|3=1}}
|-
| {{Numbered block|1=:|2=<math>a^2 - b^2 = (a + b) (a - b)</math>|3=2}}
|-
| {{Numbered block|1=:|2=<math>e^{i x} = \cos x + i \sin x</math>|3=3}}
|-
| {{Numbered block|1=:|2=<math>\sin^2 \theta + \cos^2 \theta = 1</math>|3=4}}
|-
| {{Numbered block|1=:|2=<math>\sin(2 \theta) = 2 \sin \theta \cos \theta</math>|3=5}}
|}
Renders as

(mouse over the row you want to highlight)

Positioning relative to surrounding images

Numbered blocks should be able to be placed around images that take up space on the left or right side of the screen. To ensure numbered block has access to the entire line, consider using a {{clear}}-like template.

To illustrate, consider the example:

Markup
[[Image:Bnet_fan2.png|frame|right|Fig.1: Bayesian Network representation of Eq.(6)]]
[[Image:Bnet_fan2.png|frame|left|Fig.1: Bayesian Network representation of Eq.(6)]]
<br><br>A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of
variables and their probabilistic independencies. For example, a Bayesian network could represent the
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
{{Numbered block|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}
Renders as
Fig.1: Bayesian Network representation of Eq.(6)
Fig.1: Bayesian Network representation of Eq.(6)



A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of variables and their probabilistic independencies. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

If it is desirable for the numbered block to span the entire line, a {{clear}} should be placed before it.

Markup
[[Image:Bnet_fan2.png|frame|right|Fig.1: Bayesian Network representation of Eq.(6)]]
[[Image:Bnet_fan2.png|frame|left|Fig.1: Bayesian Network representation of Eq.(6)]]
<br><br>A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of
variables and their probabilistic independencies. For example, a Bayesian network could represent the
probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute
the probabilities of the presence of various diseases.
{{clear}}
{{Numbered block|1=:|2=<math>
P(a, b, \lambda) = P(a| \lambda) P(b | \lambda) P(\lambda)\,
</math>,|3='''Eq.(6)'''|RawN=.}}
Renders as
Fig.1: Bayesian Network representation of Eq.(6)
Fig.1: Bayesian Network representation of Eq.(6)



A Bayesian network (or a belief network) is a probabilistic graphical model that represents a set of variables and their probabilistic independencies. For example, a Bayesian network could represent the probabilistic relationships between diseases and symptoms. Given symptoms, the network can be used to compute the probabilities of the presence of various diseases.

Table caveat

Because {{Numbered block}} is implemented as a table, putting {{Numbered block}} within a table yields a nested table. Due to a bug in MediaWiki's handling of nested tables, {{Numbered block}} must be used carefully in this case. In particular, when indentation for the outer table is desired, use explicit <dl><dd>...</dd></dl> tags for indentation instead of a leading colon (:).

For example,

Markup
<dl><dd>
{|
|<math>(f * g)[n]\,</math>&nbsp; &nbsp; &nbsp; 
|{{Numbered block||<math>\stackrel{\mathrm{def}}{=}\sum_{m=-\infty}^{\infty} f[m]\cdot g[n - m]\,</math>|
3=<span style="color:darkred">'''(Eq.1)'''</span>|RawN=.}}
|-
|
|<math>= \sum_{m=-\infty}^{\infty} f[n-m]\cdot g[m].\,</math> &nbsp; &nbsp; &nbsp; ([[Convolution#Commutativity|commutativity]])
|}
</dd></dl>
Renders as
     
      (commutativity)

which shows how the outer <dl><dd>...</dd></dl> tags give the same indentation as a single colon (:) preceding the table should.

For another example,

Markup
<dl><dd>
<dl><dd>
{|
|-
|The first parameter for indentation still works when used inside table.
{{Numbered block|::::|<math>ax^2+bx+c=0</math>|Level 4}}
{{Numbered block|:::|<math>ax^2+bx+c=0</math>|Level 3}}
{{Numbered block|::|<math>ax^2+bx+c=0</math>|Level 2}}
{{Numbered block|:|<math>ax^2+bx+c=0</math>|Level 1}}
{{Numbered block||<math>ax^2+bx+c=0</math>|Level 0}}
|-
|}
</dd></dl>
</dd></dl>
Renders as
The first parameter for indentation still works when used inside table.

which uses two sets of explicit tags to give the same indentation as two colons (::).