Eryops: Difference between revisions
No edit summary |
Unrulyevil5 (talk | contribs) No edit summary |
||
Line 15: | Line 15: | ||
== Description == |
== Description == |
||
[[File:Eryops1DB.jpg|left|thumb|Life restoration]] |
[[File:Eryops1DB.jpg|left|thumb|Life restoration]] |
||
''Eryops'' averaged a little over {{convert|1.5|-|2.0|m|ftin|abbr=on}} long and could grow up to {{convert|3|m|ftin|abbr=on}},<ref name=Schoch2009>{{cite journal|doi=10.1146/annurev.earth.031208.100113|title=Evolution of life cycles in early amphibians|journal=Annual Review of Earth and Planetary Sciences |volume=37 |issue=1|pages=135–162 |year=2009 |last1=Schoch |first1=Rainer R.|bibcode=2009AREPS..37..135S}}</ref> making them among the largest land animals of their time. Adults weighed between {{cvt|102|and|222|kg|lb}}.<ref>{{cite journal|last1=Hart|first1=L.J.|last2=Campione|first2=N.E.|last3=McCurry|first3=M.R.|year=2022|title=On the estimation of body mass in temnospondyls: a case study using the large-bodied Eryops and Paracyclotosaurus|journal=Palaeontology|volume=65|issue=6|pages=e12629|doi=10.1111/pala.12629|doi-access=free}}</ref> The skull was proportionately large, being broad and flat and reaching lengths of {{convert|60|cm|in|abbr=on}}. It had an enormous mouth with many curved teeth, like those of frogs. Its teeth had [[tooth enamel|enamel]] with a folded pattern, leading to its early classification as a "[[labyrinthodont]]" ("maze toothed"). The shape and cross section of ''Eryops'' teeth made them exceptionally strong and resistant to stresses.<ref name= Rinehart&lucas2013/> The palate, or roof of the mouth, contained three pairs of backward-curved fangs, and was covered in backward-pointing bony projections which would have been used to trap slippery prey once caught. This, coupled with the wide gape, suggest an inertial method of feeding, in which the animal would grasp its prey and thrust forward, forcing the prey |
''Eryops'' averaged a little over {{convert|1.5|-|2.0|m|ftin|abbr=on}} long and could grow up to {{convert|3|m|ftin|abbr=on}},<ref name=Schoch2009>{{cite journal|doi=10.1146/annurev.earth.031208.100113|title=Evolution of life cycles in early amphibians|journal=Annual Review of Earth and Planetary Sciences |volume=37 |issue=1|pages=135–162 |year=2009 |last1=Schoch |first1=Rainer R.|bibcode=2009AREPS..37..135S}}</ref> making them among the largest land animals of their time. Adults weighed between {{cvt|102|and|222|kg|lb}}.<ref>{{cite journal|last1=Hart|first1=L.J.|last2=Campione|first2=N.E.|last3=McCurry|first3=M.R.|year=2022|title=On the estimation of body mass in temnospondyls: a case study using the large-bodied Eryops and Paracyclotosaurus|journal=Palaeontology|volume=65|issue=6|pages=e12629|doi=10.1111/pala.12629|doi-access=free}}</ref> The skull was proportionately large, being broad and flat and reaching lengths of {{convert|60|cm|in|abbr=on}}. It had an enormous mouth with many curved teeth, like those of frogs. Its teeth had [[tooth enamel|enamel]] with a folded pattern, leading to its early classification as a "[[labyrinthodont]]" ("maze toothed"). The shape and cross section of ''Eryops'' teeth made them exceptionally strong and resistant to stresses.<ref name= Rinehart&lucas2013/> The palate, or roof of the mouth, contained three pairs of backward-curved fangs, and was covered in backward-pointing bony projections which would have been used to trap slippery prey once caught. This, coupled with the wide gape, suggest an inertial method of feeding, in which the animal would grasp its prey and thrust forward, forcing the prey further back into its mouth.<ref name= Rinehart&lucas2013>{{cite journal|last1=Rinehart, L. F. |last2=Lucas, S. G. |year=2013 |title=Tooth form and function in temnospondyl amphibians: relationship of shape to applied stress |journal=New Mexico Museum of Natural History Bulletin |volume=61 |pages=533–542 |url=http://paleo.cortland.edu/globaltriassic2/Bulletin%2061%20Final/40-Rinehart%20and%20Lucas%20(Metopo%20teeth).pdf}}</ref> |
||
''Eryops'' was much more strongly built and sturdy than its relatives, and had the most massive and heavily ossified skeleton of all known temnospondyls.<ref>[https://books.google.com/books?id=0ps6AwAAQBAJ&dq=%22Eryops+the+most+heavily+ossified+one%22&pg=PT237 Amphibian Evolution: The Life of Early Land Vertebrates]</ref> The limbs were especially large and strong. The [[pectoral girdle]] was highly developed, with a larger size for increased [[muscle]] attachments. Most notably, the shoulder girdle was disconnected from the skull, resulting in improved terrestrial locomotion. The crossopterygian [[cleithrum]] was retained as the [[clavicle]], and the [[interclavicle]] was well-developed, lying on the underside of the chest. In primitive forms, the two clavicles and the interclavicle could have grown ventrally in such a way as to form a broad chest plate, although |
''Eryops'' was much more strongly built and sturdy than its relatives, and had the most massive and heavily ossified skeleton of all known temnospondyls.<ref>[https://books.google.com/books?id=0ps6AwAAQBAJ&dq=%22Eryops+the+most+heavily+ossified+one%22&pg=PT237 Amphibian Evolution: The Life of Early Land Vertebrates]</ref> The limbs were especially large and strong. The [[pectoral girdle]] was highly developed, with a larger size for increased [[muscle]] attachments. Most notably, the shoulder girdle was disconnected from the skull, resulting in improved terrestrial locomotion. The crossopterygian [[cleithrum]] was retained as the [[clavicle]], and the [[interclavicle]] was well-developed, lying on the underside of the chest. In primitive forms, the two clavicles and the interclavicle could have grown ventrally in such a way as to form a broad chest plate, although that was not the case in ''Eryops''. The upper portion of the girdle had a flat scapular blade, with the [[glenoid]] cavity situated below performing as the articulation surface for the [[humerus]], while ventrally there was a large flat [[coracoid]] plate turning in toward the midline.<ref name=appendicular_eryops>{{cite journal|last1=Pawley|first1=Kat|last2=Warren|first2=Anne |year=2006 |title=The appendicular skeleton of ''Eryops megacephalus'' Cope, 1877 (Temnospondyli: Eryopoidea) from the Lower Permian of North America |journal=Journal of Paleontology |volume=80 |issue=3 |pages=561–580 |doi=10.1666/0022-3360(2006)80[561:TASOEM]2.0.CO;2 |jstor=4095151|s2cid=56320401 }}</ref> |
||
The [[Pelvis|pelvic]] girdle |
The [[Pelvis|pelvic]] girdle was much larger than the simple plate found in fishes, accommodating more muscles. It extended far dorsally and was joined to the backbone by one or more specialized sacral [[rib]]s. The hind legs were somewhat specialized in that they not only supported weight, but also provided propulsion. The dorsal extension of the pelvis was the ''[[ilium (bone)|ilium]]'', while the broad ventral plate was composed of the [[pubis (bone)|pubis]] in front and the [[ischium]] behind. The three bones met at a single point in the center of the pelvic triangle, called the ''acetabulum'', providing a surface of articulation for the [[femur]].<ref name=appendicular_eryops/> |
||
The texture of ''Eryops'' skin was revealed by a fossilized "mummy" described in 1941. This mummy specimen showed that the body in life was covered in a pattern of oval bumps.<ref name=romerwitter1941>{{cite journal|last1=Romer|first1=A. S.|last2=Witter|first2=R. V. |year=1941 |title=The skin of the rachitomous amphibian ''Eryops'' |journal=American Journal of Science |volume=239 |issue=11 |pages=822–824 |doi=10.2475/ajs.239.11.822|bibcode=1941AmJS..239..822R|doi-access=free }}</ref> |
The texture of ''Eryops'' skin was revealed by a fossilized "mummy" described in 1941. This mummy specimen showed that the body in life was covered in a pattern of oval bumps.<ref name=romerwitter1941>{{cite journal|last1=Romer|first1=A. S.|last2=Witter|first2=R. V. |year=1941 |title=The skin of the rachitomous amphibian ''Eryops'' |journal=American Journal of Science |volume=239 |issue=11 |pages=822–824 |doi=10.2475/ajs.239.11.822|bibcode=1941AmJS..239..822R|doi-access=free }}</ref> |
||
Line 26: | Line 26: | ||
[[File:Eryops megacephalus (cast) at Göteborgs Naturhistoriska Museum 2355.jpg|thumb|Cast of the skull]] |
[[File:Eryops megacephalus (cast) at Göteborgs Naturhistoriska Museum 2355.jpg|thumb|Cast of the skull]] |
||
''Eryops'' is currently thought to contain only one species, ''E. megacephalus'', which means "large-headed ''Eryops''". ''E. megacephalus'' fossils have been found only in rocks dated to the early [[Permian]] period ([[Sakmarian]] age, about 295 million years ago) in the southwestern United States, primarily in the [[Admiral Formation]] of the [[Red Beds of Texas and Oklahoma|Texas Red Beds]].<ref>Gould, Stephen Jay, ed. |
''Eryops'' is currently thought to contain only one species, ''E. megacephalus'', which means "large-headed ''Eryops''". ''E. megacephalus'' fossils have been found only in rocks dated to the early [[Permian]] period ([[Sakmarian]] age, about 295 million years ago) in the southwestern United States, primarily in the [[Admiral Formation]] of the [[Red Beds of Texas and Oklahoma|Texas Red Beds]].<ref>Gould, Stephen Jay, ed. |
||
[https://books.google.com/books?id=9DIloiBThhIC&dq=eryops+archer+county&pg=PA94 The Book Of Life: An Illustrated History of the Evolution of Life on Earth.] W.W. Norton: 2001, pg. 94. Retrieved August 28, 2017.</ref> During the mid-20th century, some older fossils were classified as a second species of ''Eryops'', ''E. avinoffi''. This species, known from [[Carboniferous]] period fossil found in [[Pennsylvania]], had originally been classified in the genus ''[[Glaukerpeton]]''.<ref>{{cite journal| last1=Romer |first1=Alfred S. |year=1952 |title=Late Pennsylvanian and Early Permian vertebrates in the Pittsburgh-West Virginia region |journal=Annals of Carnegie Museum |volume=33 |pages=47–113}}</ref> Beginning in the late 1950s, some scientists concluded that ''Glaukerpeton'' was too similar to ''Eyrops'' to deserve its own genus. However, later studies supported the original classification of ''Glaukerpeton'', finding |
[https://books.google.com/books?id=9DIloiBThhIC&dq=eryops+archer+county&pg=PA94 The Book Of Life: An Illustrated History of the Evolution of Life on Earth.] W.W. Norton: 2001, pg. 94. Retrieved August 28, 2017.</ref> During the mid-20th century, some older fossils were classified as a second species of ''Eryops'', ''E. avinoffi''. This species, known from [[Carboniferous]] period fossil found in [[Pennsylvania]], had originally been classified in the genus ''[[Glaukerpeton]]''.<ref>{{cite journal| last1=Romer |first1=Alfred S. |year=1952 |title=Late Pennsylvanian and Early Permian vertebrates in the Pittsburgh-West Virginia region |journal=Annals of Carnegie Museum |volume=33 |pages=47–113}}</ref> Beginning in the late 1950s, some scientists concluded that ''Glaukerpeton'' was too similar to ''Eyrops'' to deserve its own genus. However, later studies supported the original classification of ''Glaukerpeton'', finding it was more primitive than ''Eryops'' and other early temnospondyls.<ref name=werneburg&berman2012>{{cite journal|doi=10.2992/007.081.0103|title=Revision of the aquatic eryopid temnospondyl ''Glaukerpeton avinoffi'' Romer, 1952, from the Upper Pennsylvanian of North America|journal=Annals of Carnegie Museum|volume=81|pages=33–60 |year=2012|last1=Werneburg|first1=Ralf|last2=Berman|first2=David S|s2cid=83566130}}</ref> Supposed ''Eryops'' fossils found in older [[Pennsylvanian (geology)|Pennsylvanian]] epoch rocks of the [[Conemaugh Group]] in West Virginia<ref>{{cite journal| last1=Murphy |first1=James L. |year=1971 |title=Eryopsid Remains from the Conemaugh Group, Braxton County, West Virginia |journal=Southeastern Geology |volume=13 |issue=4 |pages=265–273}}</ref> also turned out to be remains of ''Glaukerpeton''.<ref name=werneburg&berman2012/> In 2005, a skull clearly belonging to ''Eryops'' was found in upper [[Pennsylvanian (geology)|Pennsylvanian]] epoch rocks of the [[El Cobre Canyon Formation]] in [[New Mexico]], representing the oldest known specimen.<ref name=werneburgetal2010a>{{cite book| last1=Werneburg |first1=R. |author2=S.G. Lucas |author3=J.W. Schneider |author4=L.F. Rinehart |year=2010 |chapter=First Pennsylvanian ''Eryops'' (Temnospondyli) and its Permian record from New Mexico |pages=129–135 |editor1=Lucas, S.G. |editor2=J.W. Schneider |editor3=J.A. Spielmann |title=Carboniferous-Permian transition in Canõn del Cobre, northern New Mexico |series=New Mexico Museum of Natural History and Science Bulletin |volume=49}}</ref> |
||
==Paleobiology== |
==Paleobiology== |
Latest revision as of 00:37, 23 December 2024
Eryops | |
---|---|
Skeleton of Eryops megacephalus at the American Museum of Natural History | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Order: | †Temnospondyli |
Family: | †Eryopidae |
Genus: | †Eryops Cope, 1877 |
Species: | †E. megacephalus
|
Binomial name | |
†Eryops megacephalus Cope, 1877
|
Eryops (/ˈɛri.ɒps/; from Greek ἐρύειν, eryein, 'drawn-out' + ὤψ, ops, 'face', because most of its skull was in front of its eyes) is a genus of extinct, amphibious temnospondyls. It contains the single species Eryops megacephalus, the fossils of which are found mainly in early Permian (about 295 million years ago) rocks of the Texas Red Beds, located in Archer County, Texas. Fossils have also been found in late Carboniferous period rocks from New Mexico. Several complete skeletons of Eryops have been found in lower Permian rocks, but skull bones and teeth are its most common fossils.
Description
[edit]Eryops averaged a little over 1.5–2.0 m (4 ft 11 in – 6 ft 7 in) long and could grow up to 3 m (9 ft 10 in),[1] making them among the largest land animals of their time. Adults weighed between 102 and 222 kg (225 and 489 lb).[2] The skull was proportionately large, being broad and flat and reaching lengths of 60 cm (24 in). It had an enormous mouth with many curved teeth, like those of frogs. Its teeth had enamel with a folded pattern, leading to its early classification as a "labyrinthodont" ("maze toothed"). The shape and cross section of Eryops teeth made them exceptionally strong and resistant to stresses.[3] The palate, or roof of the mouth, contained three pairs of backward-curved fangs, and was covered in backward-pointing bony projections which would have been used to trap slippery prey once caught. This, coupled with the wide gape, suggest an inertial method of feeding, in which the animal would grasp its prey and thrust forward, forcing the prey further back into its mouth.[3]
Eryops was much more strongly built and sturdy than its relatives, and had the most massive and heavily ossified skeleton of all known temnospondyls.[4] The limbs were especially large and strong. The pectoral girdle was highly developed, with a larger size for increased muscle attachments. Most notably, the shoulder girdle was disconnected from the skull, resulting in improved terrestrial locomotion. The crossopterygian cleithrum was retained as the clavicle, and the interclavicle was well-developed, lying on the underside of the chest. In primitive forms, the two clavicles and the interclavicle could have grown ventrally in such a way as to form a broad chest plate, although that was not the case in Eryops. The upper portion of the girdle had a flat scapular blade, with the glenoid cavity situated below performing as the articulation surface for the humerus, while ventrally there was a large flat coracoid plate turning in toward the midline.[5]
The pelvic girdle was much larger than the simple plate found in fishes, accommodating more muscles. It extended far dorsally and was joined to the backbone by one or more specialized sacral ribs. The hind legs were somewhat specialized in that they not only supported weight, but also provided propulsion. The dorsal extension of the pelvis was the ilium, while the broad ventral plate was composed of the pubis in front and the ischium behind. The three bones met at a single point in the center of the pelvic triangle, called the acetabulum, providing a surface of articulation for the femur.[5]
The texture of Eryops skin was revealed by a fossilized "mummy" described in 1941. This mummy specimen showed that the body in life was covered in a pattern of oval bumps.[6]
Discovery and species
[edit]Eryops is currently thought to contain only one species, E. megacephalus, which means "large-headed Eryops". E. megacephalus fossils have been found only in rocks dated to the early Permian period (Sakmarian age, about 295 million years ago) in the southwestern United States, primarily in the Admiral Formation of the Texas Red Beds.[7] During the mid-20th century, some older fossils were classified as a second species of Eryops, E. avinoffi. This species, known from Carboniferous period fossil found in Pennsylvania, had originally been classified in the genus Glaukerpeton.[8] Beginning in the late 1950s, some scientists concluded that Glaukerpeton was too similar to Eyrops to deserve its own genus. However, later studies supported the original classification of Glaukerpeton, finding it was more primitive than Eryops and other early temnospondyls.[9] Supposed Eryops fossils found in older Pennsylvanian epoch rocks of the Conemaugh Group in West Virginia[10] also turned out to be remains of Glaukerpeton.[9] In 2005, a skull clearly belonging to Eryops was found in upper Pennsylvanian epoch rocks of the El Cobre Canyon Formation in New Mexico, representing the oldest known specimen.[11]
Paleobiology
[edit]Eryops were among the most formidable early Permian carnivores and perhaps the only ones capable of competing with the dominant synapsids of the time, though because they were semi-aquatic, if not mostly aquatic, as suggested by long bone microanatomy,[12] they probably did not come into frequent competition with synapsids.[13] Eryops lived in lowland habitats in and around ponds, streams, and rivers, and the arrangement and shape of their teeth suggests that they probably ate mostly large fish and aquatic tetrapods.[1] The torso of Eryops was relatively stiff and the tail stout, which would have made them poor swimmers. While they probably fed on fish, adult Eryops must have spent most of their time on land.[1]
Like other large primitive temnospondyls, Eryops would have grown slowly and gradually from aquatic larvae, but they did not go through a major metamorphosis like many modern amphibians. While adults probably lived in ponds and rivers, perhaps venturing onto their banks, juvenile Eryops may have lived in swamps, which possibly offered more shelter from predators.[1]
References
[edit]- ^ a b c d Schoch, Rainer R. (2009). "Evolution of life cycles in early amphibians". Annual Review of Earth and Planetary Sciences. 37 (1): 135–162. Bibcode:2009AREPS..37..135S. doi:10.1146/annurev.earth.031208.100113.
- ^ Hart, L.J.; Campione, N.E.; McCurry, M.R. (2022). "On the estimation of body mass in temnospondyls: a case study using the large-bodied Eryops and Paracyclotosaurus". Palaeontology. 65 (6): e12629. doi:10.1111/pala.12629.
- ^ a b Rinehart, L. F.; Lucas, S. G. (2013). "Tooth form and function in temnospondyl amphibians: relationship of shape to applied stress" (PDF). New Mexico Museum of Natural History Bulletin. 61: 533–542.
- ^ Amphibian Evolution: The Life of Early Land Vertebrates
- ^ a b Pawley, Kat; Warren, Anne (2006). "The appendicular skeleton of Eryops megacephalus Cope, 1877 (Temnospondyli: Eryopoidea) from the Lower Permian of North America". Journal of Paleontology. 80 (3): 561–580. doi:10.1666/0022-3360(2006)80[561:TASOEM]2.0.CO;2. JSTOR 4095151. S2CID 56320401.
- ^ Romer, A. S.; Witter, R. V. (1941). "The skin of the rachitomous amphibian Eryops". American Journal of Science. 239 (11): 822–824. Bibcode:1941AmJS..239..822R. doi:10.2475/ajs.239.11.822.
- ^ Gould, Stephen Jay, ed. The Book Of Life: An Illustrated History of the Evolution of Life on Earth. W.W. Norton: 2001, pg. 94. Retrieved August 28, 2017.
- ^ Romer, Alfred S. (1952). "Late Pennsylvanian and Early Permian vertebrates in the Pittsburgh-West Virginia region". Annals of Carnegie Museum. 33: 47–113.
- ^ a b Werneburg, Ralf; Berman, David S (2012). "Revision of the aquatic eryopid temnospondyl Glaukerpeton avinoffi Romer, 1952, from the Upper Pennsylvanian of North America". Annals of Carnegie Museum. 81: 33–60. doi:10.2992/007.081.0103. S2CID 83566130.
- ^ Murphy, James L. (1971). "Eryopsid Remains from the Conemaugh Group, Braxton County, West Virginia". Southeastern Geology. 13 (4): 265–273.
- ^ Werneburg, R.; S.G. Lucas; J.W. Schneider; L.F. Rinehart (2010). "First Pennsylvanian Eryops (Temnospondyli) and its Permian record from New Mexico". In Lucas, S.G.; J.W. Schneider; J.A. Spielmann (eds.). Carboniferous-Permian transition in Canõn del Cobre, northern New Mexico. New Mexico Museum of Natural History and Science Bulletin. Vol. 49. pp. 129–135.
- ^ Quémeneur, S.; de Buffrénil, V.; Laurin, M. (2013). "Microanatomy of the amniote femur and inference of lifestyle in limbed vertebrates". Biological Journal of the Linnean Society. 109 (3): 644–655. doi:10.1111/bij.12066.
- ^ Van Valkenburgh, B.; Jenkins, I. (2002). "Evolutionary patterns in the history of Permo-Triassic and Cenozoic synapsid predators". Paleontological Society Papers. 8: 267–288. doi:10.1017/S1089332600001121.