Jump to content

2024 in archosaur paleontology: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
New dinosaur taxa: Added Allosaurus anax image
Tags: Mobile edit Mobile web edit
Line 355: Line 355:
{{Flag|United States}}<br/>({{Flag|Oklahoma}})
{{Flag|United States}}<br/>({{Flag|Oklahoma}})
|
|
An [[allosauroid]] [[theropod]]; a species of ''[[Allosaurus]]''.
An [[allosauroid]] theropod; a species of ''[[Allosaurus]]''.
|
|
[[File:Allosaurus anax (holotype, OMNH 1771).png|frameless]]
|-
|-
|
|

Revision as of 23:05, 23 December 2024

List of years in archosaur paleontology
In reptile paleontology
2021
2022
2023
2024
2025
2026
2027
In paleontology
2021
2022
2023
2024
2025
2026
2027
In science
2021
2022
2023
2024
2025
2026
2027
+...

This article records new taxa of every kind of fossil archosaur that are scheduled to be described during 2024, as well as other significant discoveries and events related to the paleontology of archosaurs that will be published in 2024.

Pseudosuchians

New pseudosuchian taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Ahdeskatanka[1]

Gen. et sp. nov

Cossette & Tarailo

Wasatchian

Golden Valley Formation

 United States
( North Dakota)

A member of the family Alligatoridae belonging to the subfamily Alligatorinae. The type species is A. russlanddeutsche.

Aphaurosuchus kaiju[2]

Sp. nov

In press

Martins et al.

Late Cretaceous

Adamantina Formation

 Brazil

A baurusuchid. Announced in 2023; the final article version was published in 2024.

Araripesuchus manzanensis[3]

Sp. nov

Valid

Fernández Dumont et al.

Late Cretaceous (Cenomanian)

Candeleros Formation

 Argentina

Asiatosuchus oenotriensis[4]

Sp. nov

Narváez et al.

Eocene (Lutetian)

 Spain

A basal member of Crocodyloidea.

Benggwigwishingasuchus[5] Gen. et sp. nov Valid Smith et al. Middle Triassic (Anisian) Favret Formation  United States
( Nevada)
A member of Paracrocodylomorpha, probably belonging to the group Poposauroidea. The type species is B. eremicarminis. Benggwigwishingasuchus

Caipirasuchus catanduvensis[6]

Sp. nov

Iori et al.

Late Cretaceous

Adamantina Formation

 Brazil

Enalioetes[7]

Gen. et sp. nov

Valid

Sachs et al.

Early Cretaceous (Valanginian)

Stadthagen Formation

 Germany

A metriorhynchid. The type species is E. schroederi.

Epoidesuchus[8]

Gen. et sp. nov

Ruiz et al.

Late Cretaceous (Campanian–Maastrichtian)

Adamantina Formation

 Brazil

A peirosaurid notosuchian. The type species is E. tavaresae.

Garzapelta[9]

Gen. et sp. nov

Valid

Reyes, Martz & Small

Late Triassic (Norian)

Cooper Canyon Formation

 United States
( Texas)

An aetosaur. The type species is G. muelleri.

Ophiussasuchus[10]

Gen. et sp. nov

Valid

López-Rojas et al.

Late Jurassic (Kimmeridgian–Tithonian)

Lourinhã Formation

 Portugal

A goniopholidid crocodylomorph. The type species is O. paimogonectes.

Paranacaiman[11] Gen. et sp. nov Bona et al. Miocene Ituzaingó Formation  Argentina A caiman. The type species is P. bravardi. Fossils of this genus were previously referred to Caiman lutescens.
Paranasuchus[11] Gen. et comb. nov Bona et al. Miocene Ituzaingó Formation  Argentina A caiman. The type species is "Caiman" gasparinae.
Parvosuchus[12] Gen. et sp. nov Müller Triassic (Ladinian–Carnian) Pinheiros-Chiniquá Sequence of the Santa Maria Supersequence  Brazil A gracilisuchid pseudosuchian. The type species is P. aurelioi.

Schultzsuchus[13]

Gen. et comb. nov

Desojo & Rauhut

Triassic (Ladinian–Carnian)

Pinheiros-Chiniquá Sequence of the Santa Maria Supersequence

 Brazil

A member of Paracrocodylomorpha, probably belonging to the group Poposauroidea. The type species is "Prestosuchus" loricatus von Huene (1938).

Sutekhsuchus[14]

Gen. et comb. nov

Valid

Burke et al.

Miocene

Moghra Formation

 Egypt
 Libya

A member of the family Gavialidae belonging to the subfamily Gavialinae. The type species is "Tomistoma" dowsoni Fourtau (1920).

Varanosuchus[15]

Gen et sp. nov

In press

Pochat-Cottilloux et al.

Early Cretaceous

Sao Khua Formation

 Thailand

An atoposaurid. The type species is V. sakonnakhonensis.

General pseudosuchian research

  • Evidence of the impact of function on the evolution of the lower jaw morphology in crocodile-line archosaurs is presented by Rawson et al. (2024).[16]
  • A review of studies on the thermometabolism of crocodile-line archosaurs from the preceding 20 years is published by Faure-Brac (2024).[17]
  • Sennikov (2024) interprets ornithosuchids as macrophagous predators with specialized jaw apparatus, and notes analogs between them and saber-toothed therapsids (including mammals).[18]
  • A study on the locomotion of Riojasuchus tenuisceps is published by von Baczko et al. (2024), who reconstruct R. tenuisceps as having an erect posture and parasagittal gait, but do not conclusively resolve whether it was bipedal or quadrupedal.[19]
  • A study on the anatomy of the skull and on the neurology of Tarjadia ruthae is published by Desojo et al. (2024).[20]
  • A study on the humeral bone histology of Benggwigwishingasuchus eremacarminis is published by Klein (2024), who finds no evidence of secondary aquatic adaptations, but reports evidence indicative a slower growth rate than in Effigia and Sillosuchus.[21]
  • Redescription of the skeletal anatomy of Shuvosaurus inexpectatus is published by Nesbitt & Chatterjee (2024).[22]
  • Mastrantonio et al. (2024) describe the anatomy of the postcranial skeleton of the most complete specimen of Prestosuchus chiniquensis reported to date, and revise the diagnosis for P. chiniquensis.[23]
  • A study on growth patterns of Prestosuchus chiniquensis, as indicated by microstructure of bone tissues of three specimens, is published by Farias et al. (2024).[24]
  • Ponce, Cerda & Desojo (2024) describe partial fibula of Aetosauroides scagliai from the Ischigualasto Formation and partial tibia of Tarjadia ruthae from the Chañares Formation diagnosed as affected by periostitis, representing the first records of periostitis in non-crocodylomorph pseudosuchians reported to date.[25]

Aetosaur research

  • Parker et al. (2024) study the anatomy and bone histology of a specimen of Coahomasuchus kahleorum from the Triassic Dockum Group (Texas, United States), providing evidence that the studied specimen is not a juvenile form of another known aetosaur, and providing new information on the anatomy of C. kahleorum.[26]

Crocodylomorph research

  • Review of adaptations of crocodylomorphs to lifestyles other than semiaquatic (i.e. terrestrial or fully aquatic) throughout their evolutionary history is published by Pochat-Cottilloux (2024).[27]
  • Pochat-Cottilloux et al. (2024) report evidence indicating that shape variation of endosseous labyrinths of extant crocodylians is affected by allometry to a greater degree than by phylogenetic relationships of the studied crocodylians, and interpret these results as indicative of problems with inclusion of fossil forms in the studies of the impact of ecology on the evolution of crocodylomorph endosseous labyrinths.[28]
  • Description of the anatomy and bone histology of the postcranial skeleton of Terrestrisuchus gracilis is published by Spiekman, Butler & Maidment.[29]
  • A study on the bone histology and growth patterns of Orthosuchus stormbergi is published by Weiss et al. (2024).[30]
  • Woodward et al. (2024) note correlation between alligator femur volume and body mass, and use femur volume to determine body mass of goniopholidids, dyrosaurs, notosuchians and thalattosuchians.[31]
  • A study on the morphological diversity of the pelvic girdle of thalattosuchians and dyrosaurids throughout their evolutionary history is published by Scavezzoni et al. (2024).[32]
  • A study on the anatomy and evolution of the pectoral girdles of thalattosuchians and dyrosaurids, an on the implications of the postcranial anatomy of crocodylomorphs for the studies of their phylogenetic relationships, is published by Scavezzoni et al. (2024).[33]
  • Young et al. (2024) provide higher level systematization for Thalattosuchia under both the PhyloCode and the International Code of Zoological Nomenclature, naming new taxa Neothalattosuchia, Euthalattosuchia and Dakosaurina.[34]
  • A study on the morphology of osteoderms of Indosinosuchus and an unnamed member of Mesoeucrocodylia from the Late Jurassic Phu Noi excavation site (Thailand) is published by Bhuttarach et al. (2024).[35]
  • A study on the bone microstructure of Macrospondylus bollensis is published by Johnson et al. (2024), who report evidence of growth at a regular rate until the animal reached adult size, of bone compactness values within within the range of those of modern crocodilians, and of an amphibious lifestyle of M. bollensis, while retaining the ability to move on land.[36]
  • Weryński et al. (2024) identify a teleosauroid rostrum from the Częstochowa Sponge Limestone Formation (Poland) as belonging to a non-machimosaurin machimosaurid feeding on large prey, with morphological similarities to Neosteneosaurus edwardsi and Proexochokefalos heberti, providing evidence that such teleosauroids were present outside of Western Europe during the Oxfordian.[37]
  • Scheyer et al. (2024) describe teleosauroid tooth crowns associated with ichthyosaur remains (with scavenging traces also produced by a teleosauroid) from the Bajocian Hauptrogenstein Formation (Switzerland), representing the oldest fossil material of a member of the tribe Machimosaurini reported to date.[38]
  • Cubo et al. (2024) interpret Pelagosaurus typus as an amphibious thalattosuchian likely able to wander over land, with high resting metabolic rate compared to extant ectotherms but unlikely to be an endotherm, and interpret its hunting behavior as likely involving slow sustained swimming and rapid sideways movements of the head to capture prey.[39]
  • A study on the endocranial anatomy of Thalattosuchus superciliosus, providing evidence of anatomical differences between geosaurine and non-geosaurine metriorhynchids, is published by Higgins et al. (2024), who argue that geosaurines and metriorhynchines likely underwent parallel shifts to a pursuit predator ecomorphology throughout their evolutionary histories.[40]
  • The first fossil material of a member or a relative of the genus Plesiosuchus from France reported to date is described from the Kimmeridgian strata of the Argiles d'Ecqueville formation in Normandy by Hua (2024).[41]
  • Hua, Liston & Tabouelle (2024) describe a specimen of Metriorhynchus cf. superciliosus from the Callovian strata from the "Vaches Noires" cliffs of Villers-sur-Mer (France), preserved with gastric contents that include remains of the gill apparatus of Leedsichthys, and interpret the studied specimen as providing evidence of Metriorhynchus scavenging on the remains of Leedsichthys.[42]
  • Young et al. (2024) study the evolution of the paratympanic and paranasal sinuses in Crocodylomorpha (with a focus on thalattosuchians), and argue that the expansive snout sinus system of metriorhynchids likely prevented them from deep diving.[43]
  • Leardi et al. (2024) review the phylogenetic nomenclature of Notosuchia, define notosuchian clades according to the PhyloCode standards and name a new clade Peirosauria.[44]
  • A study on the bone histology of Araripesuchus buitreraensis, providing evidence of generally slow, annually interrupted growth rate, is published by Navarro et al. (2024).[45]
  • Fernández-Dumont (2024) describes juvenile specimens of Araripesuchus from the La Buitrera Paleontological Area (Argentina) and provides a list of characters indicating ontogenetic status of specimens of Araripesuchus.[46]
  • Evidence of a continuous and coordinated tooth replacement in Armadillosuchus arrudai, ensuring that the animal would not lose too many teeth simultaneously and that its feeding abilities were not affected by tooth loss, is presented by Borsoni, Carvalho & Marinho (2024).[47]
  • Dos Santos et al. (2024) describe the skeletal anatomy of the most complete juvenile baurusuchid specimen reported to date, and report evidence of differences in skull ornamentation and muscle development between juvenile and adult baurusuchid specimens which might be indicative of ontogenetic niche partitioning.[48]
  • A study on tooth replacement patterns in members of the genus Caipirasuchus is published by Borsoni & Carvalho (2024).[49]
  • Redescription of the skull anatomy and a study on the phylogenetic affinities of Barreirosuchus franciscoi is published by Fachini et al. (2024).[50]
  • Fossil material of a goniopholidid, interpreted as a basal form that shared several anatomical traits with derived members of the group, is described from the Lower Cretaceous Kitadani Formation (Japan) by Obuse & Shibata (2024).[51]
  • Forêt et al. (2024) study factors driving tethysuchian evolution, reporting evidence of a turnover after the Cenomanian-Turonian boundary event when a dyrosaurid-dominated fauna replaced a pholidosaurid-dominated one, of increased tethysuchian biodiversity after the Cretaceous–Paleogene extinction event, and of a positive correlation between body length and temperature.[52]
  • Fossil material of an early-diverging, long-snouted dyrosaurid is described from the Campanian Quseir Formation (Egypt) by Saber et al. (2024).[53]
  • Jouve & Rodríguez-Jiménez (2024) describe a dyrosaurid vertebra from the Thanetian Cuervos Formation (Colombia), providing evidence of survival of dyrosaurids in South America until the end of the Paleocene.[54]
  • Kuzmin et al. (2024) present the reconstruction of the Kansajsuchus extensus and note the presence of significant differences in the braincase structure of pholidosaurids and dyrosaurids, questioning the close affinity of the two groups.[55]
  • Redescription of the anatomy of the skull of Acynodon adriaticus is published by Muscioni et al. (2024).[56]
  • Rocchi & Vila (2024) describe fossil material of Allodaposuchus cf. subjuniperus from the lower Maastrichtian deposits of the Suterranya-Mina de lignit locality (La Posa Formation; Lleida, Spain), providing evidence of the presence of a third early Maastrichtian species of Allodaposuchus (in addition to A. palustris and A. hulki) in the Tremp Group.[57]
  • Yates & Stein (2024) interpret Ultrastenos willisi and "Baru" huberi as synonymous, but maintain Ultrastenos as a distinct mekosuchine genus, resulting in a new combination Ultrastenos huberi.[58]
  • Purported sebecosuchian teeth from the Pliocene Otibanda Formation (Papua New Guinea) are reinterpreted as more likely to be mekosuchine teeth by Ristevski, Molnar & Yates (2024).[59]
  • Review of the fossil record and osmoregulation of members of Alligatoroidea is published by Stout (2024), who argues that fossil members of the group might have been salt-tolerant and more ocean-going than extant alligatoroids.[60]
  • Redescription of Arambourgia gaudryi is published by Conedera et al. (2024), who recover A. gaudryi as an alligatorine, and interpret it as a semi-terrestrial animal.[61]
  • Paiva et al. (2024) recostruct ancestral body sizes across the evolutionary history of caimanines, and interpret evolution of large body sizes in the lineages including Mourasuchus and Purussaurus as related to warmer climatic conditions with less seasonal temperature variation in the western Amazonian region of South America during the Miocene.[62]
  • A study on the skull anatomy of Eosuchus lerichei is published by Burke et al. (2024), who report possible evidence of the presence of salt glands, and interpret Eosuchus as a gavialoid that wasn't closely related to "thoracosaurs".[63]
  • Redescription of Crocodylus palaeindicus and a study on the phylogenetic relationships of members of Crocodyloidea is published by Chabrol et al. (2024), who consider Crocodylus sivalensis to be a junior synonym of C. palaeindicus, find evidence of a close relationship of Crocodylus checchiai and Crocodylus falconensis with extant American crocodiles, recover Kinyang as a crocodyline rather than osteolaemine, recover Albertosuchus knudsenii, Prodiplocynodon langi and "Crocodylus" affinis outside Crocodyloidea, and consider an alligatoroid placement for the clade Orientalosuchina to be highly labile.[64]

Non-avian dinosaurs

New dinosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Allosaurus anax[65]

Sp. nov

Valid

Danison et al.

Late Jurassic (Kimmeridgian)

Morrison Formation

 United States
( Oklahoma)

An allosauroid theropod; a species of Allosaurus.

Alpkarakush[66]

Gen. et sp. nov

Valid

Rauhut et al.

Middle Jurassic (Callovian)

Balabansai Formation

 Kyrgyzstan

A metriacanthosaurid theropod. The type species is A. kyrgyzicus.

Archaeocursor[67]

Gen. et sp. nov

In press

Yao et al.

Early Jurassic (Sinemurian–Pliensbachian)

Ziliujing Formation

 China

A basal ornithischian. The type species is A. asiaticus.

Ardetosaurus[68] Gen. et sp. nov van der Linden et al. Late Jurassic (Kimmeridgian) Morrison Formation  United States
( Wyoming)
A diplodocine sauropod. The type species is A. viator.

Asiatyrannus[69]

Gen. et sp. nov

Valid

Zheng et al.

Late Cretaceous (Maastrichtian)

Nanxiong Formation

 China

A tyrannosaurine theropod. The type species is A. xui.

Baiyinosaurus[70]

Gen. et sp. nov

Valid

Ning et al.

Middle Jurassic (Bathonian)

Wangjiashan Formation

 China

A basal stegosaurian. The type species is B. baojiensis.

Caletodraco[71]

Gen. et sp. nov

Valid

Buffetaut et. al

Late Cretaceous (Cenomanian)

Chalk of the Pays de Caux

 France

An abelisaurid theropod. The type species is C. cottardi.

Campananeyen[72]

Gen. et sp. nov

Lerzo et al.

Late Cretaceous (Cenomanian)

Candeleros Formation

 Argentina

An rebbachisaurid sauropod. The type species is C. fragilissimus.

Chakisaurus[73]

Gen. et sp. nov

Alvarez Nogueira et al.

Late Cretaceous (Cenomanian–Turonian)

Huincul Formation

 Argentina

An elasmarian ornithopod. The type species is C. nekul.

Coahuilasaurus[74] Gen. et sp. nov Valid Longrich et al. Late Cretaceous (Campanian) Cerro del Pueblo Formation  Mexico A saurolophine hadrosaurid belonging to the tribe Kritosaurini. The type species is C. lipani.
Comptonatus[75] Gen. et sp. nov Lockwood et al. Early Cretaceous (Barremian) Wessex Formation  United Kingdom An iguanodontid ornithopod. The type species is C. chasei.

Datai[76]

Gen. et sp. nov

Valid

Xing et al.

Late Cretaceous (Turonian–Early Coniacian)

Zhoutian Formation

 China

An ankylosaurid. The type species is D. yingliangis.

Diuqin[77]

Gen. et sp. nov

Valid

Porfiri et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A unenlagiine theropod. The type species is D. lechiguanae.

Dornraptor[78]

Gen. et sp. nov

Valid

Baron

Early Jurassic (Hettangian–Sinemurian)

Blue Lias Formation

 United Kingdom

An averostran theropod. The type species is D. normani.

Emiliasaura[79]

Gen. et sp. nov

Coria et al.

Early Cretaceous (Valanginian)

Mulichinco Formation

 Argentina

An ornithopod belonging to the group Rhabdodontomorpha. The type species is E. alessandrii.

Eoneophron[80]

Gen. et sp. nov

Atkins-Weltman et al.

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( South Dakota)

A caenagnathid theropod. The type species is E. infernalis.

Fona[81] Gen. et sp. nov Avrahami et al. Late Cretaceous (Cenomanian) Cedar Mountain Formation  United States
( Utah)
A thescelosaurid ornithischian. The type species is F. herzogae.

Gandititan[82]

Gen. et sp. nov

Valid

Han et al.

Late Cretaceous (Cenomanian–Turonian)

Zhoutian Formation

 China

A titanosaur sauropod. The type species is G. cavocaudatus.

Harenadraco[83]

Gen. et sp. nov

Lee et al.

Late Cretaceous

Barun Goyot Formation

 Mongolia

A troodontid theropod. The type species is H. prima.

Hesperonyx[84]

Gen. et sp. nov

Valid

Rotatori et al.

Late Jurassic

Lourinhã Formation

 Portugal

An early diverging iguanodontian ornithopod, possibly a dryomorphan. The type species is H. martinhotomasorum.

Huaxiazhoulong[85] Gen. et sp. nov Zhu et al. Late Cretaceous (Campanian) Tangbian Formation  China An ankylosaurid. The type species is H. shouwen.

Hypnovenator[86]

Gen. et sp. nov

Valid

Kubota, Kobayashi & Ikeda

Early Cretaceous (Albian)

Ohyamashimo Formation

 Japan

A troodontid theropod. The type species is H. matsubaraetoheorum.

Inawentu[87]

Gen. et sp. nov

Valid

Filippi et al.

Late Cretaceous (Santonian)

Bajo de la Carpa Formation

 Argentina

A titanosaur sauropod. The type species is I. oslatus. Announced in 2023; the final article version was published in 2024.

Jingiella[88]

Gen. et sp. nov

Ren et al.

Late Jurassic

Dongxing Formation

 China

A mamenchisaurid sauropod. The type species is J. dongxingensis. The initially proposed name is preoccupied by Jingia Chen, 1983.[89] The replacement name was published in an addendum.[90]

Kiyacursor[91]

Gen. et sp. nov

Averianov et al.

Early Cretaceous (Aptian)

Ilek Formation

 Russia
( Kemerovo Oblast)

A noasaurid theropod. The type species is K. longipes.

Koleken[92]

Gen. et sp. nov

Pol et al.

Late Cretaceous (Campanian–Maastrichtian)

La Colonia Formation

 Argentina

An abelisaurid theropod. The type species is K. inakayali.

Labocania aguillonae[93]

Sp. nov

Valid

Rivera-Sylva & Longrich

Late Cretaceous (Campanian)

Cerro del Pueblo Formation

 Mexico

A teratophonein tyrannosaurine; a species of Labocania.

Lishulong[94]

Gen. et sp. nov

Valid

Zhang et al.

Early Jurassic (Sinemurian–Toarcian)

Lufeng Formation

 China

An early member of Sauropodiformes. The type species is L. wangi.

Lokiceratops[95]

Gen. et sp. nov

Valid

Loewen et al.

Late Cretaceous (Campanian)

Judith River Formation

 United States
( Montana)

A centrosaurine ceratopsian. The type species is L. rangiformis.

Minqaria[96]

Gen. et sp. nov

Longrich et al.

Late Cretaceous (Maastrichtian)

Ouled Abdoun Basin

 Morocco

A lambeosaurine hadrosaurid belonging to the tribe Arenysaurini. The type species is M. bata.

Musankwa[97] Gen. et sp. nov Barrett et al. Late Triassic (Norian) Pebbly Arkose Formation  Zimbabwe A massopodan sauropodomorph. The type species is M. sanyatiensis.
Qianjiangsaurus[98] Gen. et sp. nov Dai et al. Late Cretaceous Zhengyang Formation  China An early-diverging hadrosauromorph. The type species is Q. changshengi.

Qunkasaura[99]

Gen. et sp. nov

Valid

Mocho et al.

Late Cretaceous (Campanian-Maastrichtian)

Villalba de la Sierra Formation

 Spain

A saltasauroid titanosaur. The type species is Q. pintiquiniestra.

Riojavenatrix[100]

Gen. et sp. nov

Isasmendi et al.

Early Cretaceous (Barremian–Aptian)

Enciso Group

 Spain

A spinosaurid theropod. The type species is R. lacustris.

Sasayamagnomus[101] Gen. et sp. nov. Valid Tanaka et al. Early Cretaceous (Albian) Ohyamashimo Formation  Japan A basal member of Neoceratopsia. The type species is S. saegusai.

Sidersaura[102]

Gen. et sp. nov

Valid

Lerzo et al.

Late Cretaceous (Cenomanian–Turonian)

Huincul Formation

 Argentina

A rebbachisaurid sauropod. The type species is S. marae.

Thyreosaurus[103]

Gen. et sp. nov

Zafaty et al.

Middle Jurassic

El Mers Group

 Morocco

A stegosaurian. The type species is T. atlasicus.

Tiamat[104]

Gen. et sp. nov

Pereira et al.

Cretaceous (Albian–Cenomanian)

Açu Formation

 Brazil

A basal titanosaur sauropod. The type species is T. valdecii.

Tietasaura[105] Gen. et sp. nov Bandeira et al. Early Cretaceous (ValanginianHauterivian) Marfim Formation  Brazil An elasmarian ornithopod. The type species is T. derbyiana.

Titanomachya[106]

Gen. et sp. nov

Pérez-Moreno et al.

Late Cretaceous (Campanian–Maastrichtian)

La Colonia Formation

 Argentina

A titanosaur sauropod. The type species is T. gimenezi.

Tyrannosaurus mcraeensis[107]

Sp. nov

Valid

Dalman et al.

Late Cretaceous (Campanian–Maastrichtian)

Hall Lake Formation

 United States
( New Mexico)

A tyrannosaurine; a species of Tyrannosaurus.

Udelartitan[108]

Gen. et sp. nov

Valid

Soto et al.

Late Cretaceous

Guichón Formation

 Uruguay

A titanosaur sauropod belonging to the group Saltasauroidea. The type species is U. celeste.

Urbacodon norelli[109]

Sp. nov

Wang et al.

Late Cretaceous

Iren Dabasu Formation

 China

A troodontid theropod; a species of Urbacodon.

Vectidromeus[110]

Gen. et sp. nov

Valid

Longrich et al.

Early Cretaceous (Barremian)

Wessex Formation

 United Kingdom

A hypsilophodontid. The type species is V. insularis. Announced in 2023; the final article version was published in 2024.

Yanbeilong[111]

Gen. et sp. nov

Valid

Jia et al.

Early Cretaceous (Albian)

Zuoyun Formation

 China

A stegosaurian. The type species is Y. ultimus.

Yuanyanglong[112]

Gen. et sp. nov

Hao et al.

Early Cretaceous

Miaogou Formation

 China

An oviraptorosaur theropod. The type species is Y. bainian.

General non-avian dinosaur research

  • Review of studies on the phylogenetic relationships of main dinosaur groups from the preceding years is published by Lovegrove, Upchurch & Barrett (2024).[113]
  • Review of studies on the macroecology of non-avian dinosaurs from the preceding years is published by Chiarenza (2024).[114]
  • A study on diversity of Mesozoic dinosaurs throughout their evolutionary history is published by Mannion (2024).[115]
  • Review of main obstacles in the study of neurology of Mesozoic dinosaurs, and of advances in the study of dinosaur neurology, is published by Balanoff (2024).[116]
  • Evidence indicating that the evolution of rostral keratin cover was associated with partial tooth reduction throughout the evolutionary history of dinosaurs, but does not explain the complete loss of teeth in dinosaur lineages, is presented by Aguilar-Pedrayes, Gardner & Organ (2024).[117]
  • A study on the evolutionary rates of biting mechanics in herbivorous dinosaurs is published by Kunz and Sakamoto (2024), who interpret their findings as indicating that biomechanic evolution rates can reveal ecological signatures in different lineages and ontogenetic stages.[118]
  • Caspar et al. (2024) present revised estimates of encephalization and telencephalic neuron counts in dinosaurs, contesting neuron count and relative brain size estimates presented in the study of Herculano-Houzel (2023),[119] and in particular contesting estimates of exceptional neuron counts and relative brain size in large-bodied theropods compared to other dinosaurs presented by the cited author.[120]
  • Evidence from the study of an ontogenetic series of endocasts of Psittacosaurus lujiatunesis and immature specimens of other non-avian dinosaur taxa, interpreted as indicating that non-avian dinosaurs had a distinct developmental trajectory of the brain compared to extant birds and crocodilians, is presented by King et al. (2024).[121]
  • Atterholt et al. (2024) report evidence of widespread presence of bony ridges in the neural canals in the caudal vertebrae of non-avian dinosaurs, and interpret the studied structures as likely bony spinal cord supports.[122]
  • A study on the evolution of the dinosaurian climatic niche landscape throughout the Mesozoic is published by Chiarenza et al. (2024), who report that the distribution of sauropodomorphs indicates their preference for warm environments, while ornithischians and theropods explored a broader range of environments with varied climates, and interpret the colonization of areas with colder climates by theropods since the Early Jurassic as likely related to the evolution of endothermy.[123]
  • Upchurch & Chiarenza (2024) review the studies of the biogeography of non-avian dinosaurs.[124]
  • Qvarnström et al. (2024) reconstruct food webs from five tetrapod communities from the Late Triassic and Early Jurassic of Poland on the basis of data from bromalites, and interpret changes in bromalite morphologies and their contents as related to shifts in faunal composition, with increased abundance of dinosaurs coinciding with decline of formerly dominant tetrapod groups; the authors also interpret their findings as indicating that early herbivorous dinosaurs had different feeding habits than dicynodonts and aetosaurs, and interpret the studied fossils as recording stepwise rise of dinosaurs to supremacy across 30 million years of evolution.[125]
  • Putative bone fragments of large-bodied dinosaurs from Rhaetian strata in France, Germany and United Kingdom are reinterpreted as fossil material of large-bodied ichthyosaurs by Perillo & Sander (2024).[126]
  • Romilio et al. (2024) describe dinosaur tracks from the Early Jurassic (Sinemurian) Razorback Beds (Australia), representing the oldest dinosaur tracks from the country to date.[127]
  • Troiano et al. (2024) report the discovery of an association of Early Cretaceous dinosaur tracks and petroglyphs from the Serrote do Letreiro Site (Brazil).[128]
  • Review of the fossil record of Late Triassic and Jurassic dinosaurs from India is published by Khosla & Lucas (2024).[129]
  • Maidment (2024) describes the diversity of dinosaurs from the upper Morrison Formation (United States) in time and space, and finds evidence supporting cladogenesis as a means of increasing diplodocine diversity over time, as well as spatial segregation of Allosaurus and Camarasaurus species.[130]
  • Tracks of medium to large theropods and small ornithopods are described from the Lower Cretaceous (Valanginian-Aptian) Wonthaggi Formation (Victoria, Australia) by Martin et al. (2024), confirming the presence of large theropods in the polar regions of Australia during the Early Cretaceous.[131]
  • Bandeira et al. (2024) revise dinosaur remains from the Lower Cretaceous Massacará and Ilhas groups (Recôncavo Basin, Brazil) collected between 1859 and 1906, and interpret the studied fossils as indicative of the presence of an Early Cretaceous dinosaur assemblage including theropods, sauropods and ornithopods.[105]
  • New dinosaur tracksite, preserving ornithopod, sauropod and theropod tracks, is described from the Lower Cretaceous (Aptian-Albian) Duoni Formation (Tibet, China) by Li et al. (2024).[132]
  • Kirkland et al. (2024) describe the biodiversity of Cretaceous dinosaurs from Utah (United States).[133]
  • Han et al. (2024) find that rising temperatures and rainfall intensity coincided with decline and eventual disappearance of dinosaurs from the Shanyang Basin (China) during the latest Cretaceous, and argue that the recorded decline of dinosaurs in the studied area was likely caused by increased rainfall that reduced availability of suitable nesting sites for dinosaurs.[134]
  • A study on the diversification of non-avian dinosaurs, inferred from available dinosaur phylogenies, is published by Allen et al. (2024), who find it impossible to decisively conclude whether dinosaurs experienced a decline in diversity before the Cretaceous–Paleogene extinction event on the basis of available data, noting the impact of the phylodynamic models used in the study (specifically their assumptions about sampling and changes in the number of species through time) on estimates of dinosaur evolutionary rates.[135]

Saurischian research

  • A study on the femoral histology of amniotes from the Triassic Ischigualasto Formation (Argentina), including early dinosaurs Chromogisaurus novasi, Eodromaeus murphi, Eoraptor lunensis, Herrerasaurus ischigualastensis and Sanjuansaurus gordilloi, is published by Curry Rogers et al. (2024), who find that early dinosaurs known from this formation grew at least as quickly as sauropodomorph and theropod dinosaurs from the later Mesozoic, and that their elevated growth rates did not set them apart from other amniotes living at the same time.[136]
  • New dinosaur tracksites from the Middle Jurassic Dongdaqiao Formation (China), preserving tracks of large-bodied theropods and small-bodied sauropods, are described by Chen et al. (2024).[137]
  • Danison et al. (2024) redescribe fossil material assigned to Saurophaganax maximus from the Late Jurassic Morrison Formation (Oklahoma, United States), and interpret it as a chimeric taxon with the holotype specimen representing a dubious saurischian, and other specimens belonging to a novel species of Allosaurus.[65]
  • Yuan et al. (2024) describe new tracks of sauropods and theropods from the Upper Jurassic–Lower Cretaceous Houcheng Formation (Hebei, China), and interpret the studied tracks as suggestive of successive evolution of the Yanliao Biota and the Jehol Biota, with no evidence of a complete turnover or extinction of biotas, as well as suggesting that the dinosaur diversity in the North China during the earliest Cretaceous was influenced by volcanic activity.[138]
  • Paio et al. (2024) describe a new rib fragment from the Campanian–Maastrichtian aged Marília Formation (Brazil), and interpret it as representing an indeterminate saurischian.[139]

Theropod research

  • Manafzadeh et al. (2024) argue that the knees of early theropod dinosaurs were restricted to hinge-like motion, and that the reduction of the fibula during the theropod evolution had significant biomechanical consequences for theropod locomotion, freeing the fibula from the ankle joint and ultimately enabling extreme knee long-axis rotation of extant birds.[140]
  • A study on the femoral shape variation in theropods, providing evidence of evolution of similar adaptations to gigantism in large-bodied theropods regardless of their phylogenetic affinities, is published by Pintore et al. (2024).[141]
  • Barker et al. (2024) identify spinosaurid, tyrannosauroid and dromaeosaurid material in the assemblage of theropod teeth from the Valanginian Wadhurst Clay Formation (United Kingdom), and interpret the studied assemblage as likely distinct from other theropod assemblages known from Wealden Supergroup strata.[142]
  • Dridi et al. (2024) describe tracks of medium to large-sized theropods from the Lower Cretaceous (HauterivianBarremian) strata from the Jebel Kebar locality (Bouhedma Formation, Tunisia), extending known geographic range of non-avian theropods to higher latitudes within Gondwana.[143]
  • A study on the affinities of shed tooth crowns of theropods from the Turonian-Coniacian Portezuelo Formation (Argentina), providing evidence of a previously undocumented diversity of theropods from this formation, is published by Meso et al. (2024).[144]
  • Isasmendi et al. (2024) describe new and revise known theropod teeth from the Maastrichtian strata from the South Pyrenean Basin (Spain), expanding known diversity of theropods from this basin and reporting evidence of theropod turnover during the Maastrichtian.[145]
  • A partial egg clutch including the smallest non-avian theropod eggs reported to date is described from the Upper Cretaceous Tangbian Formation (China) by Wu et al. (2024), who name a new ovaloolithid ootaxon Minioolithus ganzhouensis.[146]
  • McLarty & Esperante (2024) describe theropod tracks from the Maastrichtian strata from the Carreras Pampa tracksite (Bolivia) interpreted as likely preserving evidence of the trackmakers pausing during movement, bypassing an obstacle and crouching.[147]
  • Bugos & McDavid (2024) describe skulls of immature specimens of Coelophysis bauri from the Coelophysis Quarry at Ghost Ranch (New Mexico, United States).[148]
  • Marsh et al. (2024) describe post-cranial material from the Lower Jurassic Kayenta Formation (Utah, United States) and interpret it as belonging to an intermediate theropod.[149]
  • Liang, Falkingham & Xing (2024) present a digital skeleton model of Sinosaurus, based on data from a new, well-preserved specimen, and provide new body mass estimates for this theropod.[150]
  • Hendrickx et al. (2024) restudy the osteology, phylogenetic relationships, and feeding ecology of Noasaurus leali and name a new clade Berthasauridae.[151]
  • Mohabey et al. (2024) review and redescribe Laevisuchus indicus, Jubbulpuria tenuis and Compsosuchus solus, and describe a new noasaurid dentary from central India with procumbent dentition similar to the one present in Masiakasaurus.[152]
  • A study on the affinities of isolated theropod teeth from the Kem Kem Group (Morocco) is published by Hendrickx et al. (2024), who identify teeth of abelisaurids, spinosaurines, carcharodontosaurids and a non-abelisauroid ceratosaur or a megaraptoran.[153]
  • A probable ceratosaurid dentary is described from the Toarcian Cañadón Asfalto Formation (Argentina) by Pradelli, Pol & Ezcurra (2024), expanding known theropod diversity from this formation.[154]
  • A study on the affinities of isolated theropod teeth from the Bauru Basin (Brazil) is published by Delcourt et al. (2024), who argue that the geographical distribution of abelisaurids in South America was influenced by climatic conditions.[155]
  • Ribeiro et al. (2024) identify a theropod tooth from the Upper Jurassic-Lower Cretaceous Missão Velha Formation (Brazil) as the oldest abelisaurid record in the South America reported to date.[156]
  • A study in the bone histology of a mid-sized abelisaurid from the Upper Cretaceous Serra da Galga Formation (Brazil) is published by Aureliano et al. (2024), who report that, despite living in a semiarid tropical environment, the studied specimen had a growth rate similar to those of the Patagonian abelisaurids.[157]
  • Candeiro et al. (2024) describe abelisaurid teeth from the strata of the Marília Formation in the State of Goiás (Brazil), representing the northernmost abelisaurid record in the Bauru Basin reported to date.[158]
  • A study on the skeletal pathologies affecting known specimens of brachyrostran abelisaurids is published by Baiano et al. (2024), who diagnose the fusion of two caudal vertebrae of the holotype specimen of Aucasaurus garridoi as congenital malformation and diagnose partial fusion of five caudal vertebrae of the holotype of Elemgasem nubilus as spondyloraptropathy, in both cases representing the first occurrences of the diagnosed pathologies among non-tetanuran theropods.[159]
  • Cerroni, Otero & Novas (2024) present the reconstruction of the pelvic and hindlimb musculature of Skorpiovenator bustingorryi.[160]
  • Theropod teeth from the upper Campanian–lower Maastrichtian strata from the fossil site of Poyos (Villalba de la Sierra Formation, Spain) are identified as teeth of an abelisaurid that was likely closely related to Arcovenator by Malafaia et al. (2024).[161]
  • A study on the microarchitecture of bones of the axial skeleton of Majungasaurus and Rahonavis, providing evidence of increase of pneumatic complexity in early paravians compared to members of Ceratosauria, is published by Aureliano et al. (2024).[162]
  • Cau (2024) reinterprets "compsognathid" theropod specimens as juveniles of members of non-maniraptoriform tetanuran groups.[163]
  • Montealegre, Castillo-Visa & Sellés (2024) describe previously unpublished fossil material of theropods (cf. Protathlitis and a carcharodontosaurid which might be distinct from Concavenator) from the Barremian Arcillas de Morella Formation (Spain).[164]
  • Lacerda et al. (2024) describe new fossil material of spinosaurids (including a cervical vertebra of Sigilmassasaurus) and partial ischium of an indeterminate carcharodontosaurid from the Kem Kem Group (Morocco).[165]
  • Yun (2024) identifies convergent similarities in craniodental anatomy between spinosaurs and phytosaurs.[166]
  • D'Amore et al. (2024) study the morphology of the skull and teeth of spinosaurids, and find no evidence that the diets of spinosaurids were restricted to fish or small aquatic prey.[167]
  • A study on the diversity of spinosaurid teeth from the Camarillas Formation (Spain) is published by Cabrera-Argudo, García-Cobeña & Cobos (2024), who report possible evidence of the presence of at least one baryonychine and one spinosaurine in the eastern Iberian Peninsula during the early Barremian.[168]
  • The purported abelisaur ilium from the Upper Cretaceous Kem Kem Group (Morocco) described by Zitouni et al. (2019)[169] is interpreted as a bone of a spinosaurine spinosaurid different from the ilium of the Spinosaurus aegyptiacus neotype by Samathi (2024), who considers the studied fossil to be likely evidence of the presence of two morphotypes of spinosaurines in the Kem Kem Group.[170]
  • Myhrvold et al. (2024) use statistical analyses to reconsider previous descriptions by Fabbri et al. (2022) of spinosaurs such as Spinosaurus as subaqueous foragers,[171] and provide evidence that Spinosaurus was likely not an aquatic pursuit predator.[172]
  • Evidence from the study of patterns in skull shape, interpreted as indicating that Spinosaurus fed on aquatic prey and likely used the "stand-and-wait" predation strategy, is presented by Smart & Sakamoto (2024).[173]
  • Buffetaut & Tong (2024) reinterpret a purported ichthyosaur tooth from the Sao Khua Formation collected in 1962 and described in 1963 as a spinosaurid tooth and the first finding of a non-avian dinosaur fossil reported from Thailand.[174]
  • Evidence of large ranges of extension and flexion of manual joints and limited range of motion of the shoulder joints of Allosaurus fragilis is presented by Liang et al. (2024).[175]
  • A dorsal vertebra of an indeterminate carcharodontosaurid with similarities to the vertebrae of Acrocanthosaurus is described from the Turonian Bissekty Formation (Uzbekistan) by Averianov & Sues (2024).[176]
  • Rolando et al. (2024) describe a second specimen of Taurovenator violantei, expanding on the known anatomy of this genus.[177]
  • Rowe & Rayfield (2024) study the biomechanical capabilities of the skulls of tyrannosauroid theropods with different body size and skull morphology, and find that larger tyrannosauroids experienced higher absolute stresses in their skulls during feeding compared to their small-bodied relatives, and that wide skulls of tyrannosaurids enabled them to better accommodate high stresses during feeding.[178]
  • A study on tooth replacement pattern of Guanlong wucaii is published by Ke, Pei & Xu (2024).[179]
  • Teeth of a probable basal tyrannosauroid are described from the Upper Jurassic Phu Kradung Formation (Thailand) by Chowchuvech et al. (2024).[180]
  • Xing et al. (2024) describe large tyrannosauroid teeth from the Maastrichtian Dalangshan Formation, representing the southernmost record of tyrannosauroids in China reported to date.[181]
  • LeBlanc et al. (2024) report that extant Komodo dragons maintain cutting edges of their teeth through iron-enriched coatings on their tooth serrations and tips, argue that iron sequestration is probably widespread in reptile enamels, but also find no evidence of iron coatings along theropod dinosaur tooth serrations, report that tyrannosaurids had specialized, wavy enamel along their tooth serrations that likely supported the cutting edges of the teeth, and interpret these findings as either indicative of different feeding strategies of tyrannosaurids and Komodo dragons, or indicating that only large theropods had tooth enamel that was thick enough to significantly influence the mechanical wear of the tooth serrations.[182]
  • Słowiak, Brusatte & Szczygielski (2024) reevaluate the fossil material attributed to Bagaraatan ostromi, interpreting the holotype as an indeterminate juvenile tyrannosaurid, and reporting that some of the fossils originally attributed to B. ostromi are actually caenagnathid bones.[183]
  • Yun (2024) estimates mandibular force profiles of Alioramus altai and Qianzhousaurus sinensis, interpreting the mandibles of the studied theropods as likely unsuited for delivering powerful bites and enduring high stresses caused by capturing, holding and dismembering large prey.[184]
  • Evidence from the study of skull bones of immature specimens of Daspletosaurus from the Dinosaur Park Formation (Alberta, Canada), indicating that skull material of Daspletosaurus and Gorgosaurus can be confidently identified regardless of ontogenetic stage of the specimens, is presented by Coppock et al. (2024).[185]
  • A study on the affinities of tyrannosaurines is published by Warshaw, Barrera Guevara & Fowler (2024), who contest the conclusions of the study of Scherer & Voiculescu-Holvad (2023),[186] recovering recognized Daspletosaurus species as representing a single anagenetic lineage ancestral to Tyrannosaurus-line tyrannosaurines.[187]
  • Longrich & Saitta (2024) review the taxonomic status of Nanotyrannus and argue that multiple lines of evidence support it as a distinct, small-bodied, possibly non-tyrannosaurid taxon, rather than an immature form of Tyrannosaurus.[188]
  • Mallon & Hone (2024) estimate that past sampling efforts likely resulted in sampling even the 99th percentile of body mass reached by Tyrannosaurus rex, and that the very largest members of the species might have been up to 70% larger than the largest currently known specimens, reaching approximately 15,000 (± 3750) kg of body mass.[189]
  • A study on the phylogenetic relationships of Kinnareemimus khonkaenensis is published by Samathi (2024).[190]
  • A study on the phylogenetic relationships of alvarezsaurians and on the evolution of their body mass is published by Meso et al. (2024).[191]
  • Gianechini et al. (2024) describe and indeterminate alvarezsaurian femur from the Plottier Formation (Argentina), filling a temporal gap (between Coniacian and Santonian) in the fossil record of Late Cretaceous Patagonian alvarezsaurians.[192]
  • Description of the skeletal anatomy of Nothronychus graffami and N. mckinleyi, providing evidence of the presence of traits convergent with extant birds, ornithischian dinosaurs and titanosaur sauropods, is published by Smith & Gillette (2024).[193]
  • Park et al. (2024) propose that early pennaraptorans might have used their pennaceous feathers to flush hiding insects and to generate lift or drag during the pursuit of the flushed insects, and propose that such use of the pennaceous feathers might have contributed to the evolution of larger and stiffer feathers.[194]
  • A characterization of how number and shape of flight feathers correlate with locomotory style in extant birds is published by Kiat & O'Connor (2024). Extrapolating these patterns to Mesozoic pennaraptorans, the authors suggest that Caudipteryx and anchiornithines may have been secondarily flightless.[195]
  • A study on the evolution of the pectoral girdle of pennaraptorans is published by Wu et al. (2024), who report evidence of modifications changing the range of motion of the forelimb that preceded the origin of flight in paravians, as well as evidence of subsequent flight adaptive modifications in avialans.[196]
  • Meade et al. (2024) report evidence indicating that the ability of the skull to resist large mechanical stresses appeared early in oviraptorosaur evolution, before the appearance of the highly modified oviraptorid cranial architecture.[197]
  • The first caenagnathid fossil material from the upper Campanian De-na-zin Member of the Kirtland Formation (New Mexico, United States) is described by Funston, Williamson & Brusatte (2024).[198]
  • Qiu et al. (2024) describe the skeletal anatomy of the wrist of Heyuannia huangi, providing evidence of a specialized wrist morphology that was functionally convergent with the wrist morphology of extant birds.[199]
  • Description of the skeletal anatomy of Oksoko avarsan is published by Funston (2024).[200]
  • Zhu, Wang & Wang (2024) study the microstructural variation of elongatoolithid eggs from China, and interpret the studied variation as indicating that not all elongatoolithid eggshells can be related to oviraptorosaurs.[201]
  • A study on the skull shape and bite mechanics of dromaeosaurids is published by Tse, Miller & Pittman (2024), who interpret Deinonychus antirrhopus as adapted to taking large vertebrate prey, and interpret Halszkaraptor escuilliei as unlikely to feed on fish, and more likely to have a feeding ecology similar to those of extant waterfowl.[202]
  • Possible dromaeosaurid eggs are described from the Upper Cretaceous Lianhe Formation (China) by Wu et al. (2024), who name a new ootaxon Gannanoolithus yingliangi, and interpret the discovery of paired eggs of Gannanoolithus as possible evidence that dromaeosaurids had paired functional oviducts.[203]
  • Motta et al. (2024) interpret Imperobator antarcticus as a member of Unenlagiidae.[204]
  • Gianechini, Colli & Makovicky (2024) present a reconstruction of the pelvic and hindlimb musculature of Buitreraptor gonzalezorum.[205]
  • Dececchi et al. (2024) interpret two-toed theropod trackway from the Cretaceous Jinju Formation (South Korea) produced by a small microraptorine moving at high speed as evidence of wing-assisted movement of a non-avian theropod.[206]
  • A juvenile specimen of Microraptor, representing the smallest dromaeosaurid specimen from the Jehol Biota reported to date and preserving anatomical details that are poorly preserved in the other specimens of Microraptor, is described from the Jiufotang Formation (China) by Wang & Pei (2024), who also introduce the name Serraraptoria for the most inclusive clade containing Microraptor zhaoianus and Velociraptor mongoliensis but not Mahakala omnogovae, Halszkaraptor escuilliei and Unenlagia comahuensis.[207]
  • A study on the biomechanics of the mandible and probable feeding behavior of Acheroraptor temertyorum is published by Yun (2024).[208]
  • Based on comparisons to extant birds, joint poses in the foot of Deinonychus during its walk cycle are reconstructed by Manafzadeh, Gatesy & Bhullar (2024).[209]
  • Description of the braincase and cranial endocast of Sinovenator changii, interpreted as morphologically intermediate between basal theropods and extant birds, is published by Yu et al. (2024).[210]
  • Xing et al. (2024) describe tracks from the Upper Cretaceous Shaxian Formation (Fujian, China) which might have been produced by a large-bodied (estimated hip height of over 1.8 m) troodontid, and name a new ichnotaxon Fujianipus yingliangi.[211]

Sauropodomorph research

  • Frauenfelder et al. (2024) reevaluate the utility of sauropodomorph tooth measurement indices as proxies for classification of the studied dinosaurs.[212]
  • Müller, Damke & Terras (2024) find that inclusion of skeletally immature individuals in the phylogenetic analyses of early Late Triassic sauropodomorphs results in the artificial grouping of the immature specimens in the phylogenetic trees.[213]
  • Damke et al. (2024) describe fossil material of at least three specimens of Saturnalia tupiniquim from the Candelária Sequence of the Santa Maria Supersequence (Brazil), providing new information on the skeletal anatomy of members of this species (including the first preserved rostrum) and its variation among members of this species.[214]
  • Silva et al. (2024) describe fossil material of a member or a relative of the group Bagualosauria from the Vila Botucaraí site (Candelária Sequence of the Santa Maria Supersequence, Brazil), representing the first sauropodomorph reported from this site.[215]
  • Evidence of variability of the pneumacity patterns of the cervical and dorsal vertebrae in Plateosaurus is presented by Regalado Fernández (2024).[216]
  • Redescription of the holotype and a study on the affinities of Plateosaurus trossingensis is published by Schaeffer (2024).[217]
  • Schaeffer et al. (2024) describe pathologies in the chevrons of the tail in two specimens of Plateosaurus trossingensis from the Obere Mühle locality in Trossingen (Germany), report pathologies in the tail chevrons in further specimens indicating that chevrons were a vulnerable part of the tail, and interpret the affected individuals as able to recover without too many complications as long as there was no severe functional damage inflicted.[218]
  • Zhao et al (2024) describe a new juvenile–subadult massospondylid specimen from the Lower Jurassic Lufeng Formation (Yunnan, China), increasing known diversity of massospondylids from Asia.[219]
  • "Gyposaurus" sinensis is interpreted as a probable junior synonym of Lufengosaurus huenei by Wang, Zhao & You (2024).[220]
  • Reisz et al. (2024) report that bone development in the femora of Lufengosaurus is closer to that of altricial pigeons than precocious chickens, and argue that Lufengosaurus hatchlings were likely altricial.[221]
  • Barrett & Choiniere (2024) redescribe the skeletal anatomy of Melanorosaurus readi and designate the lectotype of this species.[222]
  • A study on the histology of teeth and on the evolution of tooth replacement patterns in sauropod dinosaurs is published by D'Emic et al. (2024).[223]
  • Kareem, Chakraborty & Wilson Mantilla (2024) report evidence of the presence of tail clubs in Kotasaurus yamanpalliensis, sharing morphological similarities with tail clubs of Omeisaurus tianfuensis and Shunosaurus lii.[224]
  • Redescription of the skull anatomy of Bagualia alba is published by Gomez, Carballido & Pol (2024).[225]
  • Using Spinophorosaurus as an example, Vidal (2024) explains how virtual 3D models of sauropods have enabled an understanding of their biomechanics.[226]
  • Agustí, Alcalá & Santos-Cubedo (2024) propose that sauropod gigantism was an adaptation that increased the ability of sauropods to travel great distances, necessitated by pronounced seasonal changes.[227]
  • Santos et al. (2024) coin a replacement name Galinhapodus for the ichnogenus Polyonyx including sauropod tracks from the Middle Jurassic Serra de Aire Formation (Portugal).[228]
  • Butler et al. (2024) describe an assemblage of tracks produced by large-bodied sauropods passing through coastal lagoonal environment from the earliest Cretaceous strata of the Durlston Formation (Dorset, United Kingdom), representing the largest dinosaur track site accessible within the Purbeck Group reported to date.[229]
  • Boisvert et al. (2024) describe a new specimen of Haplocanthosaurus sp. from the Dry Mesa Dinosaur Quarry (Colorado, United States), extending known range of the genus into the true Brushy Basin Member of the Morrison Formation, and likely representing the geologically youngest occurrence of Haplocanthosaurus on the Colorado Plateau.[230]
  • King et al. (2024) report evidence of a previously unknown form of pneumaticity in a rib of a member of the genus Apatosaurus, and propose that rib pneumaticity among apatosaurines is individually variable.[231]
  • Windholz et al. (2024) describe a new rebbachisaurid caudal vertebra from the Cenomanian Candeleros Formation (Argentina), providing new information on the caudal anatomy and pneumaticity in rebbachisaurids.[232]
  • A study on the morphology of teeth of Europasaurus holgeri is published by Régent et al. (2024), who report evidence interpreted as indicative of the presence of a strong connective tissue that partially covered the teeth, and argue that such structure might have been present in other members of Eusauropoda.[233]
  • Gomes et al. (2024) describe a well-preserved trackway of a large sauropod (probably a titanosauriform with a mosaic of basal and derived features) with a unique set of characteristics from the Lower Cretaceous Sousa Formation (Brazil), and name a new ichnotaxon Sousatitanosauripus robsoni.[234]
  • A trackway produced by an early juvenile titanosauriform sauropod is described from the Cenomanian Jindong Formation (South Korea) by Yoon et al. (2024), who compare this trackway with other sauropod trackways from the Jindong Formation, and report evidence that trackway gauges got narrower as pes length increased.[235]
  • Gomez et al. (2024) describe new titanosauriform fossils from the Portezuelo Formation (Argentina), expanding known diversity of sauropods from this formation.[236]
  • A titanosauriform femur belonging to a subadult individual that reached a significantly larger size than other titanosauriform specimens with modified lamellar bone tissue at a similar growth stage is described from the Upper Cretaceous Bayan Shireh Formation (Mongolia) by Witasik, Słowiak & Szczygielski (2024), indicating that the characteristic modified laminar bone tissue of titanosauriform did not prevent those sauropods from achieving large body size.[237]
  • Beeston et al. (2024) describe new sauropod material from the Winton Formation (Australia), and interpret Australotitan cooperensis as an indeterminate diamantinasaurian that is likely a junior synonym of Diamantinasaurus matildae.[238]
  • Filippi et al. (2024) study fossil material of sauropods from the Cerro Overo – La Invernada area (Bajo de la Carpa Formation; Neuquén Province, Argentina), interpreted as suggestive of the presence of a diverse fauna of titanosauriforms coexisting in the environment during the Santonian.[239]
  • A study on the taphonomy of the fossil material of Kaijutitan maui and on its bone histology is published by Filippi, Previtera & Garrido (2024).[240]
  • A study on the tail vertebrae of Adamantisaurus mezzalirai and Baurutitan britoi is published by Vidal et al. (2024), who interpret the studied titanosaurs as keeping their tail close to the ground, with their tails likely functioning as the fifth stabilizing member of the body.[241]
  • Vidal et al. (2024) study the range of motion of the axial series of Trigonosaurus pricei, and interpret it as capable of high elevation of the neck.[242]
  • A study on the morphological variability of titanosaur femora from the Campanian-Maastrichtian Ibero-Armorican domain, providing evidence of the presence of Lirainosaurinae and sauropods with affinities with large-bodied late Maastrichtian titanosaurs, is published by Páramo, Mocho & Ortega (2024).[243]
  • A study on the extent of the postcranial pneumaticity in saltasaurines and other derived titanosaurs is published by Zurriaguz (2024).[244]
  • A description and study of the morphological variability of sauropod appendicular remains from Maastrichtian sites of the Hațeg, Transylvanian, and Rusca Montană basins (Romania) is published by Mocho, Pérez-García & Codrea (2024), who interpret the studied remains as indicative of the presence of four or five sauropod taxa on the Hațeg Island during the Maastrichtian, including a titanosaur lineage with an extremely elongated manus.[245]
  • An overview of the largest known sauropods from Argentina is published by Calvo (2024).[246]

Ornithischian research

  • A study on the phylogenetic relationships of ornithischians is published by Fonseca et al. (2024), who name the new clades Pyrodontia and Tenontosauridae.[247]
  • A study on the taxonomic affinities of isolated ornithischian teeth from Bathonian microvertebrate sites in the United Kingdom, providing evidence of the presence of a previously unknown, diverse ornithischian fauna, is published by Wills, Underwood & Barrett (2024).[248]
  • A study on tooth replacement pattern in Jeholosaurus shangyuanensis, providing evidence that teeth replacement rate slowed during ontogeny, is published by Hu et al. (2024).[249]
  • Redescription of the skeletal anatomy and a study on the affinities of Oryctodromeus cubicularis is published by Krumenacker et al. (2024).[250]
  • An osteology and phylogenetic analysis on Ajkaceratops kozmai, suggesting the initial classification of the species as a ceratopsian as uncertain and thus regarded as an enigmatic ornithischian, was published by Czepiński and Madzia (2024).[251]
  • Lee et al., (2024) described the single pedal phalanx of the basal neornithischian (NHCG 10972) from the Lower Cretaceous Tando beds of South Korea, which is most similar to Jeholosauridae.[252]

Thyreophoran research

  • Satchell (2024) reidentified the proximal femur fragment (BELUM K3998) from the Lias Group of Northern Ireland as an indeterminate dinosaur remain, not a potential specimen of Scelidosaurus or an ornithischian.[253]
  • Castanera, Mampel & Cobos (2024) describe new stegosaur tracks from the Upper Jurassic Villar del Arzobispo Formation (Spain), providing evidence of gregarious behavior in stegosaurs.[254]
  • Sánchez-Fenollosa, Escaso & Cobos (2024) describe a new specimen of Dacentrurus armatus from the Upper Jurassic Villar del Arzobispo Formation (Spain), propose a new diagnosis for this species, and interpret Miragaia longicollum as a junior synonym of D. armatus.[255]
  • Lategano, Conti & Lozar (2024) study the stress resistance of the tail of Miragaia longicollum, interpret its tail as capable of achieving high speed and pressure, but also interpret its tail spines as less robust than those of Stegosaurus stenops, and consider their findings to be indicative of a defensive strategy that prioritized intimidation over direct physical combat.[256]
  • The first stegosaurian fossil material from Gansu (China), assigned to Stegosaurus sp., is described from the Lower Cretaceous Hekou Group by Li et al. (2024).[257]
  • Cross and Arbour (2024) describe an ankylosaur femur from the Cenomanian Dunvegan Formation (British Columbia, Canada).[258]
  • Soto Acuña, Vargas & Kaluza (2024) redescribe the holotype specimen of Antarctopelta from the Snow Hill Island Formation (Antarctica), and provide support for its phylogenetic position within the Parankylosauria.[259]
  • A study on the microstructure and probable developmental origin of small ossicles forming between osteoderms of Antarctopelta oliveroi is published by Sanchez et al. (2024).[260]

Cerapod research

  • Evidence of increase of total tooth volume and rates of tooth wear throughout the evolutionary history of ornithopod dinosaurs is presented by Ősi et al. (2024), who interpret early-diverging ornithopods as likely browsers or frugivores, and that the diets of derived ornithopods likely involved bulk feeding on more resistant, less nutritious forage.[261]
  • Alarcón-Muñoz et al. (2024) describe a vertebra of a non-hadrosauroid iguanodontian from the Lower Cretaceous Quebrada Monardes Formation (Chile), providing evidence of the presence of such ornithopods in the southwestern margin of Gondwana since at least the Early Cretaceous.[262]
  • A review of Early Cretaceous Spanish styracosterns from the Maestrat Basin published by Santos-Cubedo (2024).[263]
  • Escanero-Aguilar et al. (2024) describe skull material of a hadrosauriform ornithopod from the Lower Cretaceous Castrillo de la Reina Formation (Spain), interpreted as more derived than Iguanodon but more basal than Proa, and expanding known diversity of ornithopods from the Cameros Basin.[264]
  • Hayashi et al. (2024) report the discovery of a probable hadrosauroid vertebra from the Upper Cretaceous Hiketa Formation (Izumi Group) in Sanuki, Kagawa Prefecture, providing additional evidence of dispersal of hadrosauriforms into the area of present-day Japan by the Campanian.[265]
  • Nikolov, Dochev, & Brusatte (2024) test the ontogenetic age of small hadrosauroid bones from the Late Cretaceous (Maastrichtian) Kaylaka Formation (Bulgaria), and determine that the specimen likely belonged to a late juvenile or young subadult, rather than a dwarved adult, and suggest that large terrestrial animals were able to populate some European islands via a cyclically appearing or short-lived dispersal route.[266]
  • Van der Linden et al. (2024) describe spheroolithid eggshells from the Maastrichtian Argiles et Grès à Reptiles Formation, probably representing the first hadrosauroid eggshells reported from France, and name a new ootaxon Paraspheroolithus porcarboris.[267]
  • A study on the morphological variability of hadrosaurid teeth, and on their utility for the studies of phylogenetic relationships of hadrosaurids, is published by Dudgeon, Gallimore & Evans (2024).[268]
  • The first described hadrosaurid footprints from the Horseshoe Canyon Formation are described by Powers et al. (2024), who assign them to the ichnospecies Hadrosauropodus langstoni.[269]
  • A study on three bonebeds from the Upper Cretaceous Oldman Formation (Alberta, Canada) and Two Medicine Formation (Montana, United States) preserving remains of specimens of Hypacrosaurus stebingeri is published by Joubarne, Therrien & Zelenitsky (2024), who interpret the studied assemblages as indicating that H. stebingeri individuals lived in age-segregated groups until into their fourth year of life.[270]
  • Evidence from the study of a skull of a juvenile hadrosaurine from the Campanian Dinosaur Park Formation (Alberta, Canada), interpreted as indicative of differences in the dental battery development between hadrosaurid species which might have been related to dietary differences during early ontogeny, is presented by Warnock-Juteau et al. (2024).[271]
  • Sharpe et al. (2024) describe fossil material of a probable immature specimen of Edmontosaurus regalis from the Horseshoe Canyon Formation, and interpret its similarities to Ugrunaaluk kuukpikensis as supporting the referral of the Alaskan saurolophine material to Edmontosaurus cf. regalis.[272]
  • Wick & Lehman (2024) describe fossil material of a juvenile pachycephalosaur specimen belonging to the genus Stegoceras from the Campanian Aguja Formation (Texas, United States), providing new information on the ontogeny of members of this genus, and interpret the holotype of Texacephale langstoni as a probable adult individual belonging to the genus Stegoceras.[273]
  • Hu et al. (2024) reconstruct endocasts of Yinlong, Liaoceratops and Psittacosaurus, and interpret early ceratopsians as having more sensitive sense of smell and as adapted to hearing higher frequencies than their late-diverging relatives.[274]
  • A study on the bone histology of Yinlong downsi is published by Han et al. (2024), who report evidence indicating that Y. downsi reached sexual maturity earlier than Psittacosaurus but later than ceratopsids, and evidence of growth rates higher than those of extant squamates and crocodiles but lower than those of large-sized dinosaurs and extant mammals and birds.[275]
  • Description of the morphology of the skull and endocranium of Psittacosaurus sibiricus, based on the study of both juvenile and adult specimens, is published by Podlesnov et al. (2024).[276]
  • A description endocranial anatomy of the Psittacosaurus lujiatunensis published by Sakagami et al. (2024).[277]
  • Yang et al. (2024) describe a well-preserved scaled skin of a specimen of Psittacosaurus from the Early Cretaceous Jehol Biota of China, providing evidence of preservation of epidermal layers, corneocytes and melanosomes, and interpret the studied specimen as indicative of co-occurrence of feathers and reptile-type skin in non-feathered regions of the skin in Psittacosaurus.[278]
  • Witton & Hing (2024) argue that there is no compelling evidence indicating that the development of the idea of the griffin was inspired by the discovery of fossils of Protoceratops.[279]
  • Demers-Potvin & Larsson (2024) describe fossil material of Centrosaurus apertus from the strata of the Campanian Dinosaur Park Formation in Saskatchewan Landing Provincial Park (Canada), expanding known geographical range of this species.[280]
  • Barrera Guevara et al. (2024) reinterpret fossil material of Coahuilaceratops magnacuerna as derived from Cerro Huerta Formation (and representing the first dinosaur taxon described from this formation) rather than from Cerro del Pueblo Formation.[281]

Birds

New bird taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Agapornis longipes[282]

Sp. nov

In press

Pavia et al.

PlioPleistocene transition

Cradle of Humankind

 South Africa

A lovebird; a species of Agapornis.

Ardenna buchananbrowni[283]

Sp. nov

Valid

Tennyson et al.

Pliocene (Waipipian)

Tangahoe Formation

 New Zealand

A species of Ardenna.

Avisaurus darwini[284]

Sp. nov

Valid

Clark et al.

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( Montana)

A member of Enantiornithes belonging to the family Avisauridae.

Bambusicola wenzensis[285]

Comb. nov

Valid

(Jánossý)

Pliocene

 Poland

A bamboo partridge; moved from Francolinus capeki wenzensis Jánossý (1974).

Buteo chimborazoensis[286]

Sp. nov

Lo Coco, Agnolín & Carrión

Pleistocene

 Ecuador

A species of Buteo.

Chauvireria axaina[285]

Sp. nov

Valid

Zelenkov

Miocene

 Russia
( Rostov Oblast)
 Ukraine

Chauvireria egorovkensis[285]

Sp. nov

Valid

Zelenkov

Miocene

 Ukraine

Chauvireria minor[285]

Comb. nov

Valid

(Jánossý)

Miocene

 Mongolia
 Poland
 Russia
( Buryatia
 Voronezh Oblast?)
 Ukraine

Moved from Francolinus (Lambrechtia) minor Jánossý (1974).

Chloephaga dabbenei[287]

Sp. nov

Valid

Agnolín, Álvarez Herrera & Tomassini

Pleistocene

 Argentina

A species of Chloephaga.

Coturnix augustus[285]

Sp. nov

Valid

Zelenkov

Pliocene

 Mongolia

A species of Coturnix.

Enkuria[288]

Gen. et sp. et comb. nov

Valid

Zelenkov

Pliocene and Pleistocene

 Crimea

A relative of the grey partridge. The type species is E. voinstvenskyi; genus also includes "Phasianus" etuliensis Bocheński & Kurochkin (1987) from Moldova.

Eocypselus geminus[289] Sp. nov In press Mayr & Kitchener Eocene London Clay  United Kingdom A species of Eocypselus.
Eocypselus grandissimus[289] Sp. nov In press Mayr & Kitchener Eocene London Clay  United Kingdom A species of Eocypselus.
Eocypselus paulomajor[289] Sp. nov In press Mayr & Kitchener Eocene London Clay  United Kingdom A species of Eocypselus.
Fluvioviridavis michaeldanielsi[290] Sp. nov Mayr & Kitchener Eocene London Clay  United Kingdom A species of Fluvioviridavis.
Fluvioviridavis nazensis[290] Sp. nov Mayr & Kitchener Eocene London Clay  United Kingdom A species of Fluvioviridavis.

Imparavis[291]

Gen. et sp. nov

In press

Wang et al.

Early Cretaceous

Jiufotang Formation

 China

An enantiornithine. The type species is I. attenboroughi.

Kustokazanser[292]

Gen. et comb. nov

Zelenkov

Late Eocene

Aksyir Svita

 Kazakhstan

An anseriform of uncertain placement; a new genus for "Cygnavus" formosus.

Lumbrerornis[293]

Gen. et sp. nov

Valid

Bertelli et al.

Eocene (Lutetian)

Lumbrera Formation

 Argentina

A bird of uncertain affinities, possibly related to the families Palaeotididae and Geranoididae. The type species is L. rougieri.

Magnusavis[284]

Gen. et sp. nov

Valid

Clark et al.

Late Cretaceous (Maastrichtian)

Hell Creek Formation

 United States
( Montana)

A member of Enantiornithes. The type species is M. ekalakaenis.

Marocortyx[285]

Gen. et comb. nov

Valid

Zelenkov

Pliocene and Pleistocene

 Morocco
 Spain

A member of the family Phasianidae belonging to the tribe Coturnicini. The type species is "Plioperdix" africana Mourer-Chauviré & Geraads (2010); genus also includes "Palaeocryptonyx" novaki Sánchez Marco (2009).

?Masillatrogon incertus[294]

Sp. nov

Valid

Mayr & Kitchener

Eocene

London Clay

 United Kingdom

A trogon.

Melanitta kirbori[295]

Sp. nov

Valid

Zelenkov

Lower Pleistocene

Taurida Cave

 Crimea

A scoter; a species of Melanitta.

Miochelidon[296]

Gen. et sp. nov

Volkova

Miocene

Tagay Formation

 Russia

A swallow. The type species is M. eschata.

Mionetta turgaiensis[292]

Sp. nov

Zelenkov

Early Oligocene

Chelkarnura Formation

 Kazakhstan

A species of Mionetta.

Nasiornis[297] Gen. et sp. nov In press Mayr & Kitchener Eocene London Clay  United Kingdom A messelornithid. The type species is N. messelornithoides.
Navaornis[298] Gen. et sp. nov Valid Chiappe et al. Late Cretaceous Adamantina Formation  Brazil A member of Enantiornithes. The type species is N. hestiae.

Paakniwatavis[299]

Gen. et sp. nov

Valid

Musser & Clarke

Eocene

Green River Formation

 United States
( Wyoming)

An early member of Anseriformes. The type species is P. grandei.

Pakudyptes[300]

Gen. et sp. nov

Ando et al.

Late Oligocene

Otekaike Limestone

 New Zealand

An early penguin. The type species is P. hakataramea.

Palaeocryptonyx capeki[285]

Comb. nov

Valid

(Lambrecht)

Pleistocene

 Poland
 Romania
 Russia
( Krasnodar Krai)

A member of the family Phasianidae belonging to the tribe Coturnicini; moved from Francolinus capeki Lambrecht (1933).

Palaeoperdix hungarica[285]

Comb. nov

Valid

(Jánossý)

Miocene

 Hungary

A member of the family Phasianidae belonging to the tribe Coturnicini; moved from Palaeocryptonyx hungaricus Jánossý (1991).

Palaeoperdix miocenica[285]

Comb. nov

Valid

(Villalta)

Miocene

 Spain

A member of the family Phasianidae belonging to the tribe Coturnicini; moved from Coturnix(?) miocenica Villalta (1963).

Paralyra[301]

Gen. et comb. nov

Valid

Zelenkov

Pliocene and Pleistocene

 Poland

A grouse; a new genus for "Lagopus lagopus" atavus Jánossy (1974), originally described from the Rębielice Królewskie 1 locality in Poland, subsequently also described from the Taurida Cave in Crimea.[301]

?Paraortygoides argillae[302]

Sp. nov

Mayr & Kitchener

Eocene (Ypresian)

London Clay

 United Kingdom

A member of Galliformes, possibly belonging to the family Gallinuloididae.

?Parvirallus incertus[297] Sp. nov In press Mayr & Kitchener Eocene London Clay  United Kingdom A messelornithid; a possible species of Parvirallus.
Phalacrocorax bakonyiensis[303] Sp. nov Valid Horváth, Futó, & Kessler Miocene  Hungary A cormorant; a species of Phalacrocorax.

Plioperdix boevi[285]

Sp. nov

Valid

Zelenkov

Miocene

 Russia
( Rostov Oblast
 Stavropol Krai)

A member of the family Phasianidae belonging to the tribe Coturnicini.

Pristineanis[304]

Gen. et 2 sp. et comb. nov

Valid

Mayr & Kitchener

Eocene

London Clay

 United Kingdom
 United States

A possible member of Piciformes. The type species is P. minor; genus also includes new species P. major, as well as "Neanis" kistneri Feduccia (1973).

Prophaethon waltonensis[305]

Sp. nov

Valid

Mayr & Kitchener

Eocene

London Clay

 United Kingdom

A member of the family Prophaethontidae.

Pterodroma zinorum[306]

Sp. nov

Valid

Rando et al.

Quaternary

 Portugal
( Azores)

A gadfly petrel.

Septencoracias simillimus[304]

Sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

 United Kingdom

A stem group roller belonging or related to the family Primobucconidae.

Shuilingornis[307] Gen. et sp. nov Wang et al. Early Cretaceous Jiufotang Formation  China A euornithe in the family Gansuidae. The type species is S. angelai.

Sulcitarsus[294]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene

London Clay

 United Kingdom

A bird of uncertain affinities, with similarities of hindlimb elements to those of cuckoo-rollers and members of Accipitriformes. The type species is S. aenigmatus.

Tologuica vetusta[285]

Sp. nov

Valid

Zelenkov

Miocene

Tagay Formation

 Russia
( Irkutsk Oblast)

A member of the family Phasianidae belonging to the tribe Coturnicini.

Torgos platycephalus[308]

Sp. nov

Valid

Gorbatcheva & Zelenkov

Pleistocene

 Azerbaijan

A vulture, a species of Torgos.

Ukugyps[286]

Gen. et sp. nov

Lo Coco, Agnolín & Carrión

Pleistocene

 Ecuador

A condor. The type species is U. orcesi.

Uyrekura[292]

Gen. et sp. nov

Zelenkov

Early Oligocene

Chelkarnura Formation

 Kazakhstan

An anatid of uncertain placement. The type species is U. chalkarica.

Walbeckornis waltonensis[297] Sp. nov In press Mayr & Kitchener Eocene London Clay  United Kingdom A species of Walbeckornis.

Waltonirrisor[304]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene (Ypresian)

London Clay

 United Kingdom

A member of Upupiformes. The type species is W. tendringensis.

Waltonortyx[302]

Gen. et sp. nov

Mayr & Kitchener

Eocene (Ypresian)

London Clay

 United Kingdom

A member of Galliformes, the type genus of the new family Waltonortygidae. The type species is W. bumbanipodiides.

Wunketru[309]

Gen. et comb. nov

Valid

De Mendoza, Degrange & Tambussi

Eocene

Las Flores Formation

 Argentina

A member of Anseriformes of uncertain affinites; a new genus for "Telmabates" howardae.

Xenavicula[294]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene

London Clay

 United Kingdom

A bird of uncertain affinities, with similarities to members of Telluraves, the type genus of the new family Xenaviculidae. The type species is X. pamelae.

Ypresicolius[310]

Gen. et sp. nov

Valid

Mayr & Kitchener

Eocene

London Clay

 United Kingdom

A mousebird. The type species is Y. sandcoleiformis.

Avian research

  • A study performing quantitative functional imaging of the brain during rest and flight in rock doves with implications for the evolution of avian flight is published by Balanoff et al. (2024). They found increased neural activity in the cerebellum during flight, and through comparisons with cranial endocasts of extinct theropods, suggest that cerebellar expansion underlying such activity occurred at the base of Maniraptora, prior to the origin of avian flight.[311]
  • The Cretaceous fossil record of avialans from China is reviewed by Zhou & Wang (2024).[312]
  • Evidence of gradual and sequential moult of wing flight feathers in two probable members of Confuciusornithiformes from the Lower Cretaceous Yixian Formation (China) is presented by Wang et al. (2024).[313]
  • A morphometric study of a large sample of specimens of Confuciusornis sanctus is published by Zhou et al. (2024), who interpret their findings as indicative of the presence of sexual dimorphism in this species.[314]
  • The fossil record of avialans from the Upper Cretaceous Maastricht Formation (Belgium and the Netherlands) is reviewed by Field et al. (2024), who additionally present new data on the bone histology and hindlimb length of Asteriornis maastrichtensis.[315]
  • Stoicescu et al. (2024) describe partial femur of an avialan belonging or related to the species Elopteryx nopcsai from the Maastrichtian strata at the Nălaț-Vad locality (Romania), interpret E. nopcsai as a probable secondarily flightless avialan, and argue that Balaur bondoc might be a junior synonym of E. nopcsai.[316]
  • A study the relationship between the morphology of cervical vertebrae and dietary modes in extant and extinct birds is published by Liu et al. (2024), who report that Bohaiornis, Brevirostruavis and Longipteryx had cervical morphologies resembling those of extant insectivorous or raptorial birds, while Yanornis and Iteravis had cervical morphologies closer to those of extant generalist or herbivorous birds, falling into the ecological niches of aquatic or semiaquatic birds.[317]
  • New information on the development of the skeletons of members of Enantiornithes throughout their ontogeny, based on the study of two early immature specimens from the Lower Cretaceous Jiufotang Formation (China), is presented by O'Connor et al. (2024).[318]
  • O'Connor et al. (2024) report the discovery of gymnosperm seeds within the abdominal cavities of two specimens of Longipteryx, providing evidence of frugivory of Longipteryx.[319]
  • A study aiming to determine the diets of members of the family Bohaiornithidae is published by Miller et al. (2024), who interpret their findings as indicating that the family included taxa adapted to diverse diets, and predict the ancestral member of Enantiornithes to have been a generalist which ate a wide variety of foods.[320]
  • A study on the limb bone histology and growth dynamics of Musivavis amabilis is published by Kundrát et al. (2024).[321]
  • The Cretaceous fossil record of avialans from Antarctica is reviewed by Acosta Hospitaleche et al. (2024).[322]
  • Álvarez-Herrera & Agnolín (2024) compare Maastrichtian bird assemblages from Santa Cruz Province, Argentina and from Antarctica, note that the asseblanges differ in composition (only members of Neornithes and kin are present in Antarctica, unlike in Argentina), and interpret those differences as possibly caused by accelerated growth and high metabolism of members of Neornithes compared to more basal birds.[323]
  • A study on the antiquity of the crown group of birds is published by Brocklehurst & Field (2024), who argue that the crown group originated between 110.5 and 90.3 million years ago, and that the majority of higher-order diversification within the crown group either spanned or postdated the Cretaceous-Paleogene transition.[324]
  • A study on patterns of avian molecular evolution is published by Berv et al. (2024), who interpret their findings as indicating that the Cretaceous–Paleogene extinction event influenced the evolution of bird genomes, physiology and life history traits that in turn influenced the diversification of modern birds.[325]
  • Widrig, Navalón & Field (2024) describe the external and internal morphology of the braincase of Lithornis vulturinus, interpret its neuroanatomy as likely similar to the neuroanatomy of the ancestral crown bird, and interpret L. vulturinus as a diurnal bird that likely was reliant on visual cues and had a well-developed sense of smell.[326]
  • The histochemistry of an ostrich eggshell from the Miocene Liushu Formation (China) is examined by Wu et al. (2024).[327]
  • Pickford, Russell & Day (2024) designate a lectotype for the oospecies Psammornis rothschildi.[328]
  • Schroeter (2024) presents a characterization of diagenetiforms in a moa proteome.[329]
  • Review of moa tracks and other traces is published by Hunt & Lucas (2024), who name new ichnotaxa Turanganuipus worthyi,Moapus tennysoni, Dinornipus oweni, Gisbornepus angustus, Tutaenuipus woodi and Aotearoapus lockleyorum.[330]
  • Pickford (2024) revises fossil eggshells from the Miocene strata from the Karingarab aeolianite succession (Namibia), originally described as Struthio karingarabensis, and transfers this oospecies to the genus Diamantornis.[331]
  • A draft genome of the little bush moa is presented by Edwards et al. (2024).[332]
  • Tomlinson et al. (2024) reconstruct the range and extinction dynamics of six species of moa, and interpret their findings as indicating that the studied species likely had similar spatial patterns of geographic range collapse, and that their final populations persisted in cold, mountainous areas that continue to function as sanctuaries for New Zealand's remaining flightless birds.[333]
  • Fossil material of a possible member of Galloanserae is described from the Upper Cretaceous (Maastrichtian) Lance Formation (Wyoming, United States) by Brownstein (2024), who interprets this finding as supporting a cosmopolitan distribution of early crown birds.[334]
  • Crane et al. (2024) reevalute the anatomy of the mandible of Asteriornis maastrichtensis and find that no retroarticular process (a trait originally interpreted as supporting the placement of A. maastrichtensis within Galloanserae) is preserved in the holotype, which does not preserve the caudal extremities of the mandibles; however, the authors do not rule out the possibility that the studied bird originally had robust retroarticular processes comparable to those of extant members of Galloanserae, and their phylogenetic analysis supports the placement of Asteriornis within Galloanserae.[335]
  • Mayr et al. (2024) describe a new skull of a gastornithiform bird from Geiseltal (Germany) and assign it to the species Diatryma geiselensis, interpreted by the authors as distinctly different from Gastornis parisiensis, and advocate reestablishment of Diatryma as a genus distinct from Gastornis.[336]
  • McInerney, Blokland & Worthy (2024) redescribe the skull morphology of Genyornis newtoni and study its phylogenetic affinities, recovering the family Dromornithidae as more likely to be members of Anseriformes related to screamers than close relatives of the family Gastornithidae.[337]
  • A study on the vertebral column of Annakacygna hajimei is published by Matsuoka, Seoka & Hasegawa (2024), who reconstruct the neck of this bird with a curve at its base that increased the buoyancy and stability of the bird's body when it was in the water by helping it to put the base of the neck with its air sacs below the water surface.[338]
  • A case for the validity of Miotadorna catrionae is presented by Tennyson et al. (2024),[339] in response to Worthy et al. (2022)[340] considering it a junior synonym of Miotadorna sanctibathansi.
  • Evidence from the study of mitogenomes of the extant Brazilian merganser and extinct Auckland Island merganser, interpreted as indicating that the studied mergansers are not sister taxa and that their ancestors moved into the Southern Hemisphere in two separate colonization events at least 7 million years ago, is presented by Rawlence et al. (2024).[341]
  • A study on the evolutionary history of neoavians, as indicated by genomic data, is published by Wu et al. (2024), who argue that the initial diversification of the crown group of birds was correlated with the rise of flowering plants in the Cretaceous, that modern birds survived the Cretaceous–Paleogene extinction event relatively well, and that the Paleocene–Eocene Thermal Maximum had a significant impact on the diversification of the seabirds;[342] Claramunt et al. (2024) subsequently considered these results to be questionable, arguing that the study has problems with their choices of fossils and calibration strategy,[343] while Wu et al. (2024) rejected these criticisms.[344]
  • A study on the impression of the skeleton of a small flamingo described from the late Cenozoic Pie de Vaca site (Mexico) is published by Galicia-Coleote, Cruz & Eduardo Corona-M (2024), who interpret the studied imprint as representing an adult flamingo different from known the American extant and extinct species, providing evidence of the presence of a group of small flamingos in the late Cenozoic of North America.[345]
  • Revision of the systematics and nomenclature of the dodo, the Rodrigues solitaire and the family-group nomina based upon them is published by Young et al. (2024), who name the new subtribe Raphina for the two taxa.[346]
  • Zelenkov (2024) describes a fragmentary humerus of a buttonquail from the Lower Pleistocene strata from the Taurida Cave (Crimea), representing the first record of a member of the family Turnicidae from Eurasia from the Pliocene to Middle Pleistocene interval.[347]
  • Goodman & Rasolonjatovo (2024) study the carpal spur of the Malagasy lapwing, find it to be larger than wing spurs of living lapwings, and interpret it as likely used for defence against predators.[348]
  • Abbassi et al. (2024) describe an assemblage of vertebrate footprints from the Oligocene Lower Red Formation (Iran), including footprints of small shorebirds and possible herons and storks.[349]
  • Mayr & Kitchener (2024) describe a tarsometatarsus and an associated pedal phalanx from the Eocene London Clay (United Kingdom), showing similarities to bones of frigatebirds and interpreted as possible fossil material of Marinavis longirostris.[350]
  • Guilherme et al. (2024) report the first discovery of the left tibiotarsus of Macranhinga ranzii from the Miocene Solimões Formation (Brazil), and estimate the body mass of the studied darter as ranging from 14.39 to 19.1 kg.[351]
  • Zelenkov et al. (2024) describe fossil material of a large marine bird from the Eocene Tavda Formation (Tyumen Oblast, Russia), interpreted as evidence of a worldwide distribution of stem albatrosses or similar large procellariiforms as early as the Eocene.[352]
  • A study on the internal structure and resistance to bending forces of tarsometatarsi of extant and Eocene penguins is published by Jadwiszczak, Krüger & Mörs (2024).[353]
  • A new specimen of Palaeeudyptes is described by Xia, Pei & Li (2024).[354]
  • A study on the long limb bone microstructure of extant king penguins throughout their ontogeny is published by Canoville, Robin & de Buffrénil (2024), who find evidence of substantial intraspecific variability regardless of the ontogenetic stage, and evidence indicating that limb bones of king penguins reach adult size early in the development while their microstructure continues to change until adulthood; on the basis of their findings the authors do not consider the conclusions of Cerda, Tambussi & Degrange (2014)[355] and Ksepka et al. (2015)[356] about the paleobiology of fossil penguins to be properly supported by their data.[357]
  • The evolutionary dynamics of microsatellites in Adélie penguins based on both modern and ancient genetic samples (up to 46.5 thousand years old) are studied by McComish et al. (2024).[358]
  • Torres Etchegorry & Degrange (2024) reconstruct endocast of Argentavis magnificens, and interpret its probable brain morphology as suggesting that Argentavis was a scavenger or even a kleptoparasitic bird, living in open areas without much vegetation.[359]
  • Leoni et al. (2024) describe the first fossil material of a turkey vulture from cave deposits in northeastern Brazil, which preserves trace marks likely produced by a felid and indicating that the vulture died in the cave it was discovered in.[360]
  • A study on the age of remains of California condors from the Mule Ears Peak Cave (Texas, United States) is published by Emslie (2024), who find evidence of the presence of condors at the studied site beginning at ~15,000 calendar years before present and evidence of definite nesting ~13,000 calendar years before present, reports evidence from stable isotope analysis of bone collagen interpreted as indicating that the studied condors fed on megafauna living in a desert grassland ecosystem, and interprets these findings as indicating that the disappearance of the California condor from the inland west of North America as related to the extinctions of megafauna the end of the Pleistocene.[361]
  • The colonization of the Mediterranean Basin by Bonelli's eagle is studied by Moleón et al. (2024), drawing on data from environmental favorability, genetic structure, the fossil record, and ecological relationships with golden eagles.[362]
  • Acosta Hospitaleche & Jones (2024) describe fossil material of a large-bodied (with an estimated body mass of around 100 kg) phorusrhacid or phorusrhacid-like bird from the Eocene La Meseta Formation (Seymour Island, Antarctica), interpreted by the authors as likely apex predator of Antarctica during the Eocene.[363]
  • A study on the phylogenetic relationships and on the evolution of body size and cursoriality in phorusrhacids, providing evidence of niche partitioning and competitive exclusion that controlled phorusrhacid diversity, is published by LaBarge, Gardner & Organ (2024).[364]
  • Acosta Hospitaleche & Jones (2024) describe partial tibiotarsus of a psilopterine phorusrhacid from the Eocene (Lutetian) Sarmiento Formation (Argentina), interpreted as belonging to a bird with an estimated body mass of approximately 5 kg.[365]
  • Partial tibiotarsus of an indeterminate phorusrhacid, possibly representing the largest member of the family reported to date, is described from the La Victoria Formation (Colombia) by Degrange et al. (2024).[366]
  • A carpometacarpus of a Cuban macaw is described from the Pleistocene of El Abrón Cave (Cuba) by Zelenkov (2024).[367]
  • A study on the phylogenetic relationships of Wieslochia weissi, Crosnoornis nargizia, Jamna szybiaki, Resoviaornis jamrozi and an unnamed passerine from the Oligocene of France described by Riamon, Tourment & Louchart (2020)[368] is published by Lowi-Merri et al. (2024).[369]
  • De Pietri et al. (2024) report evidence of the presence of 10 and 17 passerine species in the Miocene St Bathans fauna (New Zealand), including a honeyeater larger than extant tui and a cracticid comparable in size to extant Australian magpie.[370]
  • Pöllath & Peters (2024) study the composition of early Holocene bird assemblages from southeast Turkey, northern Syria and northern Iraq, providing evidence of changes of bird species ranges related to climatic changes during the Pleistocene-Holocene transition, aridification during the Holocene and human activities.[371]
  • Evidence of disproportionate loss of global bird diversity resulting from extinction caused by human activities since the Late Pleistocene is presented by Matthews et al. (2024).[372]

Pterosaurs

New pterosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Akharhynchus[373]

Gen. et sp. nov

Jacobs, Smith & Zouhri

Cretaceous (Albian-Cenomanian)

Ifezouane Formation

 Morocco

A member of the family Ornithocheiridae. The type species is A. martilli.

Ceoptera[374] Gen. et sp. nov Valid Martin-Silverstone et al. Middle Jurassic Kilmaluag Formation  United Kingdom A darwinopteran. The type species is C. evansae.

Haliskia[375]

Gen. et sp. nov

Valid

Pentland et al.

Early Cretaceous (Albian)

Toolebuc Formation

 Australia

A member of Anhangueria. The type species is H. peterseni.

Inabtanin[376]

Gen. et sp. nov

Rosenbach et al.

Late Cretaceous (Maastrichtian)

Muwaqqar Chalk Marl Formation

 Jordan

A member of Azhdarchoidea. The type species is I. alarabia.

Melkamter[377] Gen. et sp. nov Valid Fernandes, Pol & Rauhut Early Jurassic Cañadón Asfalto Formation  Argentina A monofenestratan. The type species is M. pateko.

Nipponopterus[378]

Gen. et sp. nov

Zhou et al.

Late Cretaceous

Mifune Group

 Japan

A member of the family Azhdarchidae. The type species is N. mifunensis.

Propterodactylus[379]

Gen. et sp. nov

Valid

Spindler

Late Jurassic

Painten Formation  Germany A transitional monofenestratan. The type species is P. frankerlae.

Skiphosoura[380] Gen. et sp. nov Hone et al. Late Jurassic Mörnsheim Formation  Germany A transitional pterodactyliform. The type species is S. bavarica.
Torukjara[381] Gen. et sp. nov Valid Pêgas Early Cretaceous Caiuá Group  Brazil A tapejarid. The type species is T. bandeirae.

Pterosaur research

  • A study on the morphological diversity of hands and feet of pterosaurs throughout their evolutionary history is published by Smyth et al. (2024), who find evidence of changes of the hand and foot morphologies that were related to the shift from climbing lifestyles of early pterosaurs to primarily terrestrial lifestyles with more ground-based locomotion of later, short-tailed pterosaurs in the Middle Jurassic.[382]
  • A study on the cervical osteology of Anhanguera piscator, Azhdarcho lancicollis and Rhamphorhynchus muensteri, aiming to reconstruct the cervical arthrology of pterosaurs and the position of the pterosaur neck at rest, is published by Buchmann & Rodrigues (2024).[383]
  • A study on the palate structure in Kunpengopterus, Hongshanopterus, Hamipterus and Dsungaripterus, providing new information on the relations between the palatine, ectopterygoid, maxilla and pterygoid in the studied pterosaurs resulting in reinterpretation of the main palatal openings, and identifying an opening bordered anteriorly by the maxilla and posteriorly by the palatine that is unique within Diapsida and might be a synapomorphy of Pterosauria, is published by Chen et al. (2024).[384]
  • A study aiming to determine the aerodynamic impact of large heads and head crests of pterosaurs is published by Henderson (2024).[385]
  • Schade & Ansorge (2024) describe a fragmentary bone from the lower Toarcian strata of the Grimmen Formation (Mecklenburg-Vorpommern, Germany), interpret as probable fused tibia and fibula of a pterosaur and the first record of a pterosaur from the studied strata.[386]
  • Yun (2024) uses geometric morphometric analyses to investigate the relationships of pterosaur specimens from the Early Cretaceous Jinju and Hasandong formations (South Korea), and suggests that the material likely cannot be assigned to the Boreopteridae, as had previously been assumed.[387]
  • Cooper, Smith & Martill (2024) study fossilized gut contents of specimens of Dorygnathus banthensis and Campylognathoides zitteli from the Posidonia Shale (Germany), reporting evidence of Dorygnathus feeding on fishes and evidence of Campylognathoides feeding on belemnites.[388]
  • Habib & Hone (2024) study the variation seen in elements and body parts of specimens of Rhamphorhynchus muensteri, providing evidence of high levels of constraint throughout the appendicular and axial elements that were likely important for flight, and evidence of increased variability of tails of larger individuals, possibly related to the signalling function of the tail.[389]
  • Evidence from the study of tail vanes of specimens of Rhamphorhynchus muensteri from the Solnhofen Limestone (Germany), providing evidence of the presence of thicker tube-like structures criss-crossing with thinner fibres, is presented by Jagielska et al. (2024), who interpret the studied structures as likely used to maintain stiffness of the tail vane during flight.[390]
  • So, Kim & Won (2024) describe a nearly complete skeleton of a probable member of the genus Jeholopterus from the Lower Cretaceous Sinuiju Formation, representing the first pterosaur recond from North Korea reported to date.[391]
  • An incomplete hollow bone (possibly an ulna) of a possible pterodactyloid pterosaur with an estimated 3.5–4 m wingspan is described from the Bajocian Greetwell Member of the Lincolnshire Limestone Formation (Rutland, United Kingdom) by Withers et al. (2024).[392]
  • Heredia et al. (2024) describe new tracks of pterodactyloid pterosaurs from the Cenomanian Candeleros Formation (Argentina) with a different morphology from previously recorded tracks from this formation, interpreted as more likely produced by individuals of different ages rather than different species.[393]
  • Smyth & Unwin (2024) interpret Pterodactylus antiquus and Diopecephalus kochi as distinct pterodactyloid taxa that were not closely related.[394]
  • Partial finger phalanx of a member of Ctenochasmatoidea with an estimated wingspan of at least 3 m, representing one of the first records of Jurassic pterodactyloids from the United Kingdom, is described from the Kimmeridge Clay of Abingdon, Oxfordshire by Etienne et al. (2024).[395]
  • Description of the anatomy of the ankle of Pterodaustro guinazui is published by Burlot et al. (2024).[396]
  • Redescription and a study on the affinities of Haopterus gracilis is published by Xu, Jiang & Wang (2024), who recover H. gracilis as a member of Istiodactyliformes.[397]
  • Hone et al. (2024) report that the fossil material assigned to Luchibang xingzhe is a composite including remains of two pterosaurs, restrict the holotype to the rostrum and anterior mandible and consider this fossil material to be sufficient to confirm that L. xingzhe was a valid istiodactylid taxon, and interpret the purported postcranial material of L. xingzhe as remains of an indeterminate member of Azhdarchomorpha.[398]
  • Ciaffi & Bellardini (2024) describe isolated teeth of indeterminate members of Ornithocheiriformes from the Lohan Cura Formation (Neuquén Province, Argentina), providing evidence of a more abundant and diversified ornithocheiriform fauna in the south of the Neuquén Basin (at least in the Albian) than previously known.[399]
  • A study evaluating the ability of different proposed take-off motions of pterosaurs to produce leverage during the launch phase, as indicated by tests using a musculoskeletal model based on an indeterminate ornithocheiraean pterosaur with a 5 m wingspan, is published by Griffin et al. (2024).[400]
  • Cadena, Atuesta-Ortiz & Wilson Mantilla (2024) describe pterosaur fossil material from the Valanginian Rosablanca Formation and the Barremian Paja Formation (Colombia), including fossil material of an Anhanguera-like specimen extending known fossil record of such pterosaurs into the earliest part of the Cretaceous.[401]
  • Redescription of the anatomy of the postcranial skeleton of Dsungaripterus weii is published by Song, Jiang & Wang (2024).[402]
  • Large pterosaur footprints, likely produced by Dsungaripterus weii, are described from the Lower Cretaceous strata from the Junggar Basin (Xinjiang, China) by Li et al. (2024), who name a new ichnotaxon Pteraichnus junggarensis and study the relationship between pes length and hip height in pterosaurs.[403]
  • Jung & Huh (2024) describe pterosaur tracks from the Turonian Jangdong Formation (South Korea), interpreted as likely produced by small-bodied or immature azhdarchids and as probable evidence of gregariousness of the trackmakers.[404]

Other archosaurs

Other new archosaur taxa

Name Novelty Status Authors Age Type locality Country Notes Images

Gondwanax[405]

Gen. et sp. nov

In press

Müller

Middle–Late Triassic (Ladinian–early Carnian)

Pinheiros-Chiniquá Sequence of the Santa Maria Supersequence

 Brazil

A sulcimentisaurian member of the possibly paraphyletic family Silesauridae. The type species is G. paraisensis.

Other archosaur research

  • Garcia et al. (2024) describe two new lagerpetid specimens from the Carnian strata of the upper Santa Maria Formation (Brazil), interpreted as indicative of a sympatric occurrence of lagerpetids representing different morphotypes.[406]
  • Agnolín et al. (2024) revise the anatomy of the pelvic girdle of Lagerpeton chanarensis, reinterpreting it as likely to have a sprawling gait.[407]
  • A study on the anatomy of the skeleton and musculature of the hindlimbs of Lagosuchus talampayensis is published by Otero, Bishop & Hutchinson (2024), who find that the fossil material of L. talampayensis is curated with skeletal elements of members of other taxa, and estimate moment-generating capacities of reconstructed musculature.[408]

General research

  • A study on the evolution of locomotion in archosauromorph reptiles is published by Shipley et al. (2024), who interpret their findings as indicative of greater range in limb form and locomotor modes of dinosaurs compared to other archosauromorph groups, and argue that the ability to adopt a wider variety of limb forms and modes might have given dinosaurs a competitive advantage over pseudosuchians.[409]
  • A study on the body size evolution of non-avian dinosaurs and Mesozoic birds is published by Wilson et al. (2024), who find no evidence that Bergmann's rule applied to the studied taxa.[410]
  • Knoll, Ishikawa & Kawabe (2024) present a new method which can be used to determine the brain volume of extinct archosaurs on the basis their endocranial cavity volume.[411]
  • Malafaia et al. (2024) revise fossils from Portugal that were historically assigned to Megalosaurus, and find that the majority of this fossil material represents bones of members of different theropod groups, but also that the studied material includes stegosaurian, iguanodontian, sauropod and thalattosuchian bones.[412]
  • Dinosaur and probable crocodylomorph tracks, including some of the largest sauropod tracks worldwide, are described from the Bathonian strata in the El Mers area (Morocco) by Amzil et al. (2024).[413]
  • MacLennan et al. (2024) interpret exceptional preservation of fossils (including early birds and feathered non-avian dinosaurs) from the Lower Cretaceous Yixian Formation (China) as unlikely to be linked to violent volcanic eruptions.[414]

References

  1. ^ Cossette, A. P.; Tarailo, D. A. (2024). "Crocodylian diversity during the early Eocene climatic optimum in the Golden Valley Formation of North Dakota, U.S.A." Journal of Vertebrate Paleontology. 44 (1). e2403579. Bibcode:2024JVPal..44E3579C. doi:10.1080/02724634.2024.2403579.
  2. ^ Martins, K. C.; Queiroz, M. V.; Ruiz, J. V.; Langer, M. C.; Montefeltro, F. C. (2024). "A new Baurusuchidae (Notosuchia, Crocodyliformes) from the Adamantina Formation (Bauru Group, Upper Cretaceous), with a revised phylogenetic analysis of Baurusuchia". Cretaceous Research. 153. 105680. Bibcode:2024CrRes.15305680M. doi:10.1016/j.cretres.2023.105680. S2CID 261182849.
  3. ^ Fernández Dumont, M. L.; Pol, D.; Bona, P.; Apesteguía, S. (2024). "A new species of Araripesuchus with durophagous dentition increases the ecological disparity among uruguaysuchid crocodyliforms". Journal of Systematic Palaeontology. 22 (1). 2373987. Bibcode:2024JSPal..2273987F. doi:10.1080/14772019.2024.2373987.
  4. ^ Narváez, I.; de Celis, A.; Escaso, F.; Martín de Jesús, S.; Pérez-García, A.; Ortega, F. (2024). "A new Crocodyloidea from the middle Eocene of Zamora (Duero Basin, Spain)". The Anatomical Record. doi:10.1002/ar.25422. PMID 38444286.
  5. ^ Smith, Nathan D.; Klein, Nicole; Sander, P. Martin; Schmitz, Lars (July 2024). "A new pseudosuchian from the Favret Formation of Nevada reveals that archosauriforms occupied coastal regions globally during the Middle Triassic". Biology Letters. 20 (7). 20240136. doi:10.1098/rsbl.2024.0136. ISSN 1744-957X. PMC 11286145. PMID 38982977.
  6. ^ Iori, F. V.; Ghilardi, A. M.; Fernandes, M. A.; Dias, W. A. F. (2024). "A new species of vocalizing crocodyliform (Notosuchia, Sphagesauridae) from the Late Cretaceous of Brazil". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2024.2364332.
  7. ^ Sachs, Sven; Young, Mark T.; Hornung, Jahn J.; Cowgill, Thomas; Schwab, Julia A.; Brusatte, Stephen L. (2024-12-31). "A new genus of metriorhynchid crocodylomorph from the Lower Cretaceous of Germany". Journal of Systematic Palaeontology. 22 (1). Bibcode:2024JSPal..2259946S. doi:10.1080/14772019.2024.2359946. ISSN 1477-2019.
  8. ^ Ruiz, Juan V.; Queiroz, Marcos V. L.; Martins, Kawan C.; Godoy, Pedro L.; Iori, Fabiano V.; Langer, Max C.; Montefeltro, Felipe C.; Bronzati, Mario (2024-08-29). "A new Peirosauridae (Crocodyliformes, Notosuchia) from the Adamantina Formation (Bauru Group, Late Cretaceous), with a revised phylogenetic analysis of Sebecia". The Anatomical Record. doi:10.1002/ar.25559. PMID 39210546.
  9. ^ Reyes, W. A.; Martz, J. W.; Small, B. J. (2024). "Garzapelta muelleri gen. et sp. nov., a new aetosaur (Archosauria: Pseudosuchia) from the Late Triassic (middle Norian) middle Cooper Canyon Formation, Dockum Group, Texas, USA, and its implications on our understanding of the morphological disparity of the aetosaurian dorsal carapace". The Anatomical Record. 307 (4): 1271–1299. doi:10.1002/ar.25379. PMID 38206046. S2CID 266931123.
  10. ^ López-Rojas, V.; Mateus, S.; Marinheiro, J.; Mateus, O.; Puértolas-Pascual, E. (2024). "A new goniopholidid crocodylomorph from the Late Jurassic of Portugal". Palaeontologia Electronica. 27 (1). 27.1.5a. doi:10.26879/1316.
  11. ^ a b Bona, Paula; Barrios, Francisco; Ezcurra, Martín Daniel; Fernandez Blanco, María Victoria; Cidade, Giovanne Mendes (2024-12-31). "New taxa of giant caimans from the southernmost hyperdiverse wetlands of the South American late Miocene". Journal of Systematic Palaeontology. 22 (1). Bibcode:2024JSPal..2275027B. doi:10.1080/14772019.2024.2375027. ISSN 1477-2019.
  12. ^ Müller, Rodrigo T. (2024-06-20). "A new small-sized predatory pseudosuchian archosaur from the Middle-Late Triassic of Southern Brazil". Scientific Reports. 14 (1): 12706. Bibcode:2024NatSR..1412706M. doi:10.1038/s41598-024-63313-3. ISSN 2045-2322. PMC 11189902. PMID 38902259.
  13. ^ Desojo, J. B.; Rauhut, O. W. M. (2024). "Reassessment of the enigmatic "Prestosuchus" loricatus (Archosauria: Pseudosuchia) from the Middle-Late Triassic of southern Brazil". The Anatomical Record. 307 (4): 974–1000. doi:10.1002/ar.25401. PMID 38344898.
  14. ^ Burke, P. M. J.; Nicholl, C. S. C.; Pittard, B. E.; Sallam, H.; Mannion, P. D. (2024). "The anatomy and taxonomy of the North African Early Miocene crocodylian 'Tomistoma' dowsoni and the phylogenetic relationships of gavialoids". Journal of Systematic Palaeontology. 22 (1). 2384548. Bibcode:2024JSPal..2284548B. doi:10.1080/14772019.2024.2384548.
  15. ^ Pochat-Cottilloux, Yohan; Lauprasert, Komsorn; Chanthasit, Phornphen; Manitkoon, Sita; Adrien, Jérôme; Lachambre, Joël; Amiot, Romain; Martin, Jeremy E. (2024-01-09). "New Cretaceous neosuchians (Crocodylomorpha) from Thailand bridge the evolutionary history of atoposaurids and paralligatorids". Zoological Journal of the Linnean Society. 202 (2): 1–27. doi:10.1093/zoolinnean/zlad195.
  16. ^ Rawson, J. R. G.; Deakin, W. J.; Stubbs, T. L.; Smith, T. J.; Rayfield, E. J.; Donoghue, P. C. J. (2024). "Widespread convergence towards functional optimization in the lower jaws of crocodile-line archosaurs". Proceedings of the Royal Society B: Biological Sciences. 291 (2029). 20240720. doi:10.1098/rspb.2024.0720. PMC 11335402. PMID 39163982.
  17. ^ Faure-Brac, M. G. (2024). "Pseudosuchian thermometabolism: A review of the past two decades". The Anatomical Record. doi:10.1002/ar.25609. PMID 39682064.
  18. ^ Sennikov, A. G. (2024). "Ornithosuchidae—Early Archosaurs with a Hyperspecialized Jaw Apparatus". Paleontological Journal. 58 (1): 1–19. Bibcode:2024PalJ...58....1S. doi:10.1134/S0031030124010064.
  19. ^ von Baczko, M. B.; Zariwala, J.; Ballentine, S. E.; Desojo, J. B.; Hutchinson, J. R. (2024). "Biomechanical modeling of musculoskeletal function related to the terrestrial locomotion of Riojasuchus tenuisceps (Archosauria: Ornithosuchidae)". The Anatomical Record. doi:10.1002/ar.25528. PMID 38943347.
  20. ^ Desojo, J. B.; von Baczko, M. B.; Ezcurra, M. D.; Fiorelli, L. E.; Martinelli, A. G.; Bona, P.; Trotteyn, M. J.; Lacerda, M. (2024). "Cranial osteology and paleoneurology of Tarjadia ruthae: An erpetosuchid pseudosuchian from the Triassic Chañares Formation (late Ladinian-?early Carnian) of Argentina". The Anatomical Record. 307 (4): 890–924. doi:10.1002/ar.25382. PMID 38263705. S2CID 267198765.
  21. ^ Klein, N. (2024). "Diverse growth rates in Triassic archosaurs—insights from a small terrestrial Middle Triassic pseudosuchian". The Science of Nature. 111 (4). 38. Bibcode:2024SciNa.111...38K. doi:10.1007/s00114-024-01918-4. PMC 11239758. PMID 38990382.
  22. ^ Nesbitt, S. J.; Chatterjee, S. (2024). "The osteology of Shuvosaurus inexpectatus, a shuvosaurid pseudosuchian from the Upper Triassic Post Quarry, Dockum Group of Texas, USA". The Anatomical Record. 307 (4): 1175–1238. doi:10.1002/ar.25376. hdl:10919/117738. PMID 38258540.
  23. ^ Mastrantonio, B. M.; Lacerda, M. B.; de Farias, B. D. M.; Pretto, F. A.; Rezende, L. O.; Desojo, J. B.; Schultz, C. L. (2024). "Postcranial anatomy of Prestosuchus chiniquensis (Archosauria: Loricata) from the Triassic of Brazil". The Anatomical Record. 307 (4): 925–956. doi:10.1002/ar.25383. PMID 38299218. S2CID 267362910.
  24. ^ Farias, B. D. M.; Carlisbino, T.; Mastrantonio, B. M.; Desojo, J. B.; Schultz, C. L.; Soares, M. B. (2024). "The first ontogenetic model for non-crocodylomorph loricatans, based on osteohistology of the ontogenetic series of Prestosuchus chiniquensis from the Middle Triassic of Brazil". The Anatomical Record. doi:10.1002/ar.25598. PMID 39564788.
  25. ^ Ponce, D. A.; Cerda, I. A.; Desojo, J. B. (2024). "First record of palaeopathologies in appendicular bones of the Triassic pseudosuchians Erpetosuchidae and Aetosauria based on microstructural approaches". Acta Palaeontologica Polonica. 69 (3): 395–402. doi:10.4202/app.01141.2024.
  26. ^ Parker, W. G.; Stocker, M. R.; Reyes, W. A.; Werning, S. (2024). "Anatomy and ontogeny of the "carnivorous aetosaur": New information on Coahomasuchus kahleorum (Archosauria: Pseudosuchia) from the Upper Triassic Dockum Group of Texas". The Anatomical Record. doi:10.1002/ar.25600. PMID 39552562.
  27. ^ Pochat-Cottilloux, Y. (2024). "A review of the non-semiaquatic adaptations of extinct crocodylomorphs throughout their fossil record". The Anatomical Record. doi:10.1002/ar.25586. PMID 39587416.
  28. ^ Pochat-Cottilloux, Y.; Perrichon, G.; Hautier, H.; Rinder, N.; Amiot, R.; Raselli, I.; Adrien, J.; Lachambre, J.; Fernandez, V.; Martin, J. E. (2024). "Size, not phylogeny, explains the morphology of the endosseous labyrinth in the crown clade Crocodylia". Journal of Anatomy. doi:10.1111/joa.14170. PMID 39707154.
  29. ^ Spiekman, S. N. F.; Butler, R. J.; Maidment, S. C. R. (2024). "The postcranial anatomy and osteohistology of Terrestrisuchus gracilis (Archosauria, Crocodylomorpha) from the Late Triassic of Wales". Papers in Palaeontology. 10 (4). e1577. Bibcode:2024PPal...10E1577S. doi:10.1002/spp2.1577.
  30. ^ Weiss, B. M.; Dollman, K. N.; Choiniere, J. N.; Browning, C.; Botha, J. (2024). "The osteohistology of Orthosuchus stormbergi using synchrotron radiation microcomputed tomography". Journal of Anatomy. doi:10.1111/joa.14166. PMID 39462998.
  31. ^ Woodward, H. N.; Aubier, P.; Sena, M. V. A.; Cubo, J. (2024). "Evaluating extinct pseudosuchian body mass estimates using a femur volume-based model". The Anatomical Record. doi:10.1002/ar.25452. PMID 38634509.
  32. ^ Scavezzoni, I.; Fischer, V.; Johnson, M. M.; Jouve, S. (2024). "Form and function of the pelvic girdle of Thalattosuchia and Dyrosauridae (Crocodyliformes)". Geodiversitas. 46 (6): 135–326. doi:10.5252/geodiversitas2024v46a6. hdl:2268/308796.
  33. ^ Scavezzoni, I.; Johnson, M. M.; Jouve, S.; Fischer, V. (2024). "Functional and phylogenetic signals in the pectoral girdle of Thalattosuchia and Dyrosauridae (Crocodylomorpha)". The Anatomical Record. doi:10.1002/ar.25596. PMID 39587815.
  34. ^ Young, M. T.; Wilberg, E. W.; Johnson, M. M.; Herrera, Y.; Brandalise de Andrade, M.; Brignon, A.; Sachs, S.; Abel, P.; Foffa, D.; Fernández, M. S.; Vignaud, P.; Cowgill, T.; Brusatte, S. L. (2024). "The history, systematics, and nomenclature of Thalattosuchia (Archosauria: Crocodylomorpha)". Zoological Journal of the Linnean Society. 200 (2): 547–617. doi:10.1093/zoolinnean/zlad165.
  35. ^ Bhuttarach, S.; Deesri, U.; Warapeang, P.; Taesuk, N.; Lauprasert, K. (2024). "Morphology of teleosaurid osteoderms from the Phu Kradung Formation of Thailand". Annales de Paléontologie. 109 (4). 102653. doi:10.1016/j.annpal.2023.102653. S2CID 267691380.
  36. ^ Johnson, M. M.; Scheyer, T. M.; Canoville, A.; Maxwell, E. E. (2024). "Palaeohistology of Macrospondylus bollensis (Crocodylomorpha: Thalattosuchia: Teleosauroidea) from the Posidonienschiefer Formation (Toarcian) of Germany, with insights into life history and ecology". The Anatomical Record. doi:10.1002/ar.25577. PMID 39340240.
  37. ^ Weryński, Ł.; Błażejowski, B.; Szczygielski, T.; Young, M. T. (2024). "The first occurrence of machimosaurid crocodylomorphs from the Oxfordian of south-central Poland provides new insights into the distribution of macrophagous teleosauroids". PeerJ. 12. e17153. doi:10.7717/peerj.17153. PMC 10981889. PMID 38560470.
  38. ^ Scheyer, T. M.; Johnson, M. M.; Bastiaans, D.; Miedema, F.; Maxwell, E. E.; Klug, C. (2024). "Oldest record of Machimosaurini (Thalattosuchia, Teleosauroidea): teeth and scavenging traces from the Middle Jurassic (Bajocian) of Switzerland". Royal Society Open Science. 11 (4). 240071. Bibcode:2024RSOS...1140071S. doi:10.1098/rsos.240071. PMC 11004672. PMID 38601027.
  39. ^ Cubo, J.; Sena, M. V. A.; Pellarin, R.; Faure-Brac, M. G.; Aubier, P.; Cheyron, C.; Jouve, S.; Allain, R.; Jalil, N.-E. (2024). "Integrative paleophysiology of the metriorhynchoid Pelagosaurus typus (Pseudosuchia, Thalattosuchia)". The Anatomical Record. doi:10.1002/ar.25548. PMID 39180142.
  40. ^ Higgins, R. R.; Cowgill, T.; Young, M. T.; Schwab, J. A.; Herrera, Y.; Witmer, L. M.; Katsamenis, O. L.; Bowman, C.; Brusatte, S. L. (2024). "The internal braincase anatomy of Thalattosuchus superciliosus – with implications for the endocranial evolution of metriorhynchid crocodylomorphs". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2024.2427096.
  41. ^ Hua, S. (2024). "First Record of Aff. Plesiosuchus sp. (Mesosuchia, Metriorhynchidae) in the Kimmeridgian of Le Havre (Normandy, North-Western France): Biometry, Profile of Locomotion, and Paleobiological Consequences". Life. 14 (12). 1595. doi:10.3390/life14121595.
  42. ^ Hua, S.; Liston, J.; Tabouelle, J. (2024). "The Diet of Metriorhynchus (Thalattosuchia, Metriorhynchidae): Additional Discoveries and Paleoecological Implications". Fossil Studies. 2 (1): 66–76. doi:10.3390/fossils2010002.
  43. ^ Young, M. T.; Schwab, J. A.; Dufeau, D.; Racicot, R. A.; Cowgill, T.; Bowman, C. I. W.; Witmer, L. M.; Herrera, Y.; Higgins, R.; Zanno, L.; Xu, X.; Clark, J.; Brusatte, S. L. (2024). "Skull sinuses precluded extinct crocodile relatives from cetacean-style deep diving as they transitioned from land to sea". Royal Society Open Science. 11 (10). 241272. Bibcode:2024RSOS...1141272Y. doi:10.1098/rsos.241272. PMC 11523105. PMID 39479241.
  44. ^ Leardi, J. M.; Pol, D.; Montefeltro, F.; Marinho, T. S.; Ruiz, J. V.; Bravo, G. G.; Pinheiro, A. E. P.; Godoy, P. L.; Nicholl, C. S. C.; Lecuona, A.; Larsson, H. C. E. (2024). "Phylogenetic nomenclature of Notosuchia (Crocodylomorpha; Crocodyliformes)". Bulletin of Phylogenetic Nomenclature. 1 (3): 44–82. doi:10.11646/bpn.1.3.2.
  45. ^ Navarro, T. G.; Cerda, I. A.; Fernández Dumont, M. L.; Apesteguía, S.; Pol, D. (2024). "New data on the bone histology of Araripesuchus buitreraensis (Crocodylomorpha: Notosuchia) from the Late Cretaceous of Argentinean Patagonia". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2023.2301140. S2CID 266948988.
  46. ^ Fernández-Dumont, M. L. (2024). "Juvenile notosuchian crocodiles from the La Buitrera Paleontological area with comments on qualitative ontogenetic characters". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2024.2383715.
  47. ^ Borsoni, B. T.; Carvalho, I. S.; Marinho, T. S. (2024). "Armadillosuchus arrudai (Sphagesauridae, Crocodyliformes), Adamantina Formation (Turonian - Santonian), Bauru Basin, southeastern Brazil: Dental development aspects". Cretaceous Research. 158. 105838. Bibcode:2024CrRes.15805838D. doi:10.1016/j.cretres.2024.105838. S2CID 267077357.
  48. ^ dos Santos, D. M.; de Carvalho, J. C.; de Oliveira, C. E. M.; de Andrade, M. B.; Santucci, R. M. (2024). "Cranial and postcranial anatomy of a juvenile baurusuchid (Notosuchia, Crocodylomorpha) and the taxonomical implications of ontogeny". The Anatomical Record. doi:10.1002/ar.25419. PMID 38429867. S2CID 268121558.
  49. ^ Borsoni, B. T.; Carvalho, I. S. (2024). "Dental replacement in Caipirasuchus (Crocodyliformes) from the Brazilian Cretaceous". Journal of South American Earth Sciences. 146. 105084. Bibcode:2024JSAES.14605084D. doi:10.1016/j.jsames.2024.105084.
  50. ^ Fachini, T. S.; Godoy, P. L.; Montefeltro, F. C.; Langer, M. C. (2024). "Cranial morphology and phylogenetic reassessment of Barreirosuchus franciscoi (Crocodylomorpha, Notosuchia), a Peirosauria from the Late Cretaceous of Brazil". The Anatomical Record. doi:10.1002/ar.25607. PMID 39620317.
  51. ^ Obuse, S.; Shibata, M. (2024). "New goniopholidid specimens from the Lower Cretaceous Kitadani Formation, Tetori Group, Japan". Annales de Paléontologie. 110 (1). 102661. Bibcode:2024AnPal.11002661O. doi:10.1016/j.annpal.2023.102661. S2CID 268190726.
  52. ^ Forêt, T.; Aubier, P.; Jouve, S.; Cubo, J. (2024). "Biotic and abiotic factors and the phylogenetic structure of extinction in the evolution of Tethysuchia". Paleobiology. 50 (2): 285–307. Bibcode:2024Pbio...50..285F. doi:10.1017/pab.2024.5.
  53. ^ Saber, S.; Salem, B. S.; Ouda, K.; Gohar, A. S.; El-Sayed, S.; Sallam, H. M. (2024). "A long-snouted dyrosaurid (Crocodyliformes, Mesoeucrocodylia) from the Campanian Quseir Formation of Egypt". Cretaceous Research. 165. 105982. doi:10.1016/j.cretres.2024.105982.
  54. ^ Jouve, S.; Rodríguez-Jiménez, J. V. (2024). "The youngest known South American dyrosaurid (Late Paleocene of Colombia), and evolution of Dyrosauridae (Crocodyliformes: Tethysuchia)". Geodiversitas. 46 (17): 931–953. doi:10.5252/geodiversitas2024v46a17.
  55. ^ Kuzmin, I. T.; Sichinava, E. A.; Mazur, E. V.; Gombolevskiy, V. A. (2024). "Virtual reconstruction of the neurocranial anatomy of Kansajsuchus extensus (Neosuchia: Paralligatoridae) from the Upper Cretaceous of Tadzhikistan with a review of braincase osteology in Neosuchia". Cretaceous Research. 164. 105959. Bibcode:2024CrRes.16405959K. doi:10.1016/j.cretres.2024.105959.
  56. ^ Muscioni, M.; Chiarenza, A. A.; Haro Fernandez, D. B.; Dreossi, D.; Bacchia, F.; Fanti, F. (2024). "Cranial anatomy of Acynodon adriaticus and extreme durophagous adaptations in Eusuchia (Reptilia: Crocodylomorpha)". The Anatomical Record. 307 (12): 3653–3684. doi:10.1002/ar.25574. PMID 39267238.
  57. ^ Rocchi, R.; Vila, B. (2024). "New eusuchian cranial remains from the Upper Cretaceous of the southern Pyrenees". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2024.2350551.
  58. ^ Yates, A. M.; Stein, M. (2024). "A reinterpretation and taxonomic revision of Ultrastenos willisi Stein, Hand and Archer, 2016, a short-snouted mekosuchine crocodylian from the Oligocene of northern Australia". Palaeontologia Electronica. 27 (1). 27.1.a22. doi:10.26879/1355.
  59. ^ Ristevski, J.; Molnar, R. E.; Yates, A. M. (2024). "Reassessment of isolated reptilian teeth confirms the presence of ziphodont crocodylians during the Pliocene of New Guinea". Historical Biology: An International Journal of Paleobiology: 1–24. doi:10.1080/08912963.2024.2429585.
  60. ^ Stout, J. B. (2024). "Osmoregulation in Alligatoroidea: shifting the paradigm untethers biogeographic questions". Historical Biology: An International Journal of Paleobiology: 1–6. doi:10.1080/08912963.2024.2379029.
  61. ^ Conedera, D.; Pochat-Cottilloux, Y.; Rinder, N.; Adrien, J.; Martin, J. E. (2024). "An anatomical reappraisal of the dwarf crocodylian Arambourgia gaudryi from the Eocene of Quercy (France) using CT data and its implications for the phylogeny and paleoecology of basally branching alligatoroids". Journal of Vertebrate Paleontology. 43 (4). e2313612. doi:10.1080/02724634.2024.2313612.
  62. ^ Paiva, A. L. S.; Godoy, P. L.; Dunne, E. M.; Farnsworth, A.; Valdes, P. J.; Lunt, D. J.; Klein, W.; Langer, M. C.; Hsiou, A. S. (2024). "The role of climate on the emergence of giant caimanines (Crocodylia, Alligatoroidea) from the Miocene western Amazonian region". Palaeogeography, Palaeoclimatology, Palaeoecology. 656. 112582. Bibcode:2024PPP...65612582P. doi:10.1016/j.palaeo.2024.112582.
  63. ^ Burke, P. M. J.; Boerman, S. A.; Perrichon, G.; Martin, J. E.; Smith, T.; Vellekoop, J.; Mannion, P. D. (2024). "Endocranial anatomy and phylogenetic position of the crocodylian Eosuchus lerichei from the late Paleocene of northwestern Europe and potential adaptations for transoceanic dispersal in gavialoids". The Anatomical Record. doi:10.1002/ar.25569. PMID 39228104.
  64. ^ Chabrol, N.; Jukar, A. M.; Patnaik, R.; Mannion, P. D. (2024). "Osteology of Crocodylus palaeindicus from the late Miocene–Pleistocene of South Asia and the phylogenetic relationships of crocodyloids". Journal of Systematic Palaeontology. 22 (1). 2313133. Bibcode:2024JSPal..2213133C. doi:10.1080/14772019.2024.2313133.
  65. ^ a b Danison, Andrew; Wedel, Mathew; Barta, Daniel; Woodward, Holly; Flora, Holley; Lee, Andrew; Snively, Eric (2024-12-21). "Chimerism in specimens referred to Saurophaganax maximus reveals a new species of Allosaurus (Dinosauria, Theropoda)". Vertebrate Anatomy Morphology Palaeontology. 12. doi:10.18435/vamp29404. ISSN 2292-1389.
  66. ^ Rauhut, O. W. M.; Bakirov, A. A.; Wings, O.; Fernandes, A. E.; Hübner, T. R. (2024). "A new theropod dinosaur from the Callovian Balabansai Formation of Kyrgyzstan". Zoological Journal of the Linnean Society. 201 (4). zlae090. doi:10.1093/zoolinnean/zlae090.
  67. ^ Xi, Yao; Zhao, Qi; Ren, Tingcong; Wei, Guangbiao; Xu, Xing (2024-12-19). "New evidence for the earliest ornithischian dinosaurs from Asia". iScience (in press). doi:10.1016/j.isci.2024.111641.
  68. ^ van der Linden, Tom; Tschopp, Emanuel; Sookias, Roland; Wallaard, Jonathan; Holwerda, Femke; Schulp, Anne (October 2024). "A new diplodocine sauropod from the Morrison Formation, Wyoming, USA". Palaeontologia Electronica. 27 (3). doi:10.26879/1380.
  69. ^ Zheng, W.; Jin, X.; Xie, J.; Du, T. (2024). "The first deep-snouted tyrannosaur from Upper Cretaceous Ganzhou City of southeastern China". Scientific Reports. 14 (1). 16276. Bibcode:2024NatSR..1416276Z. doi:10.1038/s41598-024-66278-5. ISSN 2045-2322. PMC 11272791. PMID 39054316.
  70. ^ Ning, Li; Maidment, Susannah C. R.; Daqing, Li; Hailu, You; Guangzhao, Peng (2024-07-02). "A new stegosaur (Dinosauria: Ornithischia) from the Middle Jurassic of Gansu Province, China". Scientific Reports. 14 (1): 15241. Bibcode:2024NatSR..1415241N. doi:10.1038/s41598-024-66280-x. ISSN 2045-2322. PMC 11219857. PMID 38956140.
  71. ^ Buffetaut, E.; Tong, H.; Girard, J.; Hoyez, B.; Párraga, J. (2024). "Caletodraco cottardi: A New Furileusaurian Abelisaurid (Dinosauria: Theropoda) from the Cenomanian Chalk of Normandy (North-Western France)". Fossil Studies. 2 (3): 177–195. doi:10.3390/fossils2030009.
  72. ^ Lerzo, Lucas N.; Fernández-Baldor, Fidel Torcida; Canale, Juan I.; Whitlock, John A.; Otero, Alejandro; Gallina, Pablo A. (2024-08-13). "They all floated in the Cretaceous: new rebbachisaurid (Sauropoda, Diplodocoidea) with a highly pneumatized skeleton from the Upper Cretaceous (lower Cenomanian) of Patagonia, Argentina". Historical Biology: 1–14. doi:10.1080/08912963.2024.2383708. ISSN 0891-2963.
  73. ^ Alvarez Nogueira, R.; Rozadilla, S.; Agnolín, F. L.; Garcia Marsà, J. A.; Motta, M. J.; Novas, F. E. (2024). "A new ornithopod from the Upper Cretaceous (Huincul Formation) of northwestern Patagonia, Argentina. Implications on elasmarian postcranial anatomy". Cretaceous Research. 159. 105874. Bibcode:2024CrRes.15905874N. doi:10.1016/j.cretres.2024.105874.
  74. ^ Longrich, N.R.; Ramirez Velasco, A.A.; Kirkland, J.; Bermúdez Torres, A.E.; Serrano-Brañas, C.I. (2024). "Coahuilasaurus lipani, a New Kritosaurin Hadrosaurid from the Upper Campanian Cerro Del Pueblo Formation, Northern Mexico". Diversity. 16 (9): 531. doi:10.3390/d16090531.
  75. ^ Lockwood, Jeremy A. F.; Martill, David M.; Maidment, Susannah C. R. (2024-12-31). "Comptonatus chasei , a new iguanodontian dinosaur from the Lower Cretaceous Wessex Formation of the Isle of Wight, southern England". Journal of Systematic Palaeontology. 22 (1). Bibcode:2024JSPal..2246573L. doi:10.1080/14772019.2024.2346573. ISSN 1477-2019.
  76. ^ Xing, L.; Niu, K.; Mallon, J.; Miyashita, T. (2024). "A new armored dinosaur with double cheek horns from the early Late Cretaceous of southeastern China". Vertebrate Anatomy Morphology Paleontology. 11: 113–132. doi:10.18435/vamp29396.
  77. ^ Porfiri, Juan D.; Baiano, Mattia A.; dos Santos, Domenica D.; Gianechini, Federico A.; Pittman, Michael; Lamanna, Matthew C. (2024-06-14). "Diuqin lechiguanae gen. et sp. nov., a new unenlagiine (Theropoda: Paraves) from the Bajo de la Carpa Formation (Neuquén Group, Upper Cretaceous) of Neuquén Province, Patagonia, Argentina". BMC Ecology and Evolution. 24 (1): 77. Bibcode:2024BMCEE..24...77P. doi:10.1186/s12862-024-02247-w. ISSN 2730-7182. PMC 11177497. PMID 38872101.
  78. ^ Baron, Matthew G. (2024-04-29). "A new name for old bones: A reassessment of Early Jurassic theropod remains from Dorset, England". Palaeontologia Electronica. 27 (1): 1–12. doi:10.26879/1346. ISSN 1094-8074.
  79. ^ Coria, R. A.; Cerda, A. A.; Escaso, F.; Baiano, M. A.; Bellardini, F.; Braun, A.; Coria, L. M.; Gutierrez, J. M.; Pino, D.; Windholz, G. J.; Currie, P. J.; Ortega, F. (2024). "First Valanginian (Early Cretaceous) ornithopod (Dinosauria, Ornithischia) from Patagonia". Cretaceous Research. 166. 106027. doi:10.1016/j.cretres.2024.106027.
  80. ^ Atkins-Weltman, K. L.; Simon, D. J.; Woodward, H. N.; Funston, G. F.; Snively, E. (2024). "A new oviraptorosaur (Dinosauria: Theropoda) from the end-Maastrichtian Hell Creek Formation of North America". PLOS ONE. 19 (1). e0294901. Bibcode:2024PLoSO..1994901A. doi:10.1371/journal.pone.0294901. PMC 10807829. PMID 38266012.
  81. ^ Avrahami, Haviv M.; Makovicky, Peter J.; Tucker, Ryan T.; Zanno, Lindsay E. (2024-07-09). "A new semi-fossorial thescelosaurine dinosaur from the Cenomanian-age Mussentuchit Member of the Cedar Mountain Formation, Utah". The Anatomical Record. 307 (12): 3717–3781. doi:10.1002/ar.25505. ISSN 1932-8486. PMID 38979930.
  82. ^ Han, F.; Yang, L.; Lou, F.; Sullivan, C.; Xu, X.; Qiu, W.; Liu, H.; Yu, J.; Wu, R.; Ke, Y.; Xu, M.; Hu, J.; Lu, P. (2024). "A new titanosaurian sauropod, Gandititan cavocaudatus gen. et sp. nov., from the Late Cretaceous of southern China". Journal of Systematic Palaeontology. 22 (1). 2293038. Bibcode:2024JSPal..2293038H. doi:10.1080/14772019.2023.2293038. S2CID 267107071.
  83. ^ Lee, S.; Lee, Y.-N.; Park, J.-Y.; Kim, S.-H.; Badamkhatan, Z.; Idersaikhan, D.; Tsogtbaatar, K. (2024). "The first troodontid (Dinosauria: Theropoda) from the Upper Cretaceous Baruungoyot Formation of Mongolia". Journal of Vertebrate Paleontology. 43 (6). e2364746. doi:10.1080/02724634.2024.2364746.
  84. ^ Rotatori, F. M.; Ferrari, L.; Sequero, C.; Camilo, B.; Mateus, O.; Moreno-Azanza, M. (2024). "An unexpected early-diverging iguanodontian dinosaur (Ornithischia, Ornithopoda) from the Upper Jurassic of Portugal". Journal of Vertebrate Paleontology. 43 (4). e2310066. doi:10.1080/02724634.2024.2310066.
  85. ^ Zhu, Ziheng; Wu, Jie; You, Yue; Jia, Yingli; Chen, Chujiao; Yao, Xi; Zheng, Wenjie; Xu, Xing (2024-11-08). "A new ankylosaurid dinosaur from the Upper Cretaceous of Jiangxi Province, southern China". Historical Biology: 1–17. doi:10.1080/08912963.2024.2417208. ISSN 0891-2963.
  86. ^ Kubota, K.; Kobayashi, Y.; Ikeda, T. (2024). "Early Cretaceous troodontine troodontid (Dinosauria: Theropoda) from the Ohyamashimo Formation of Japan reveals the early evolution of Troodontinae". Scientific Reports. 14 (1). 16392. Bibcode:2024NatSR..1416392K. doi:10.1038/s41598-024-66815-2. PMC 11272788. PMID 39054320.
  87. ^ Filippi, Leonardo S.; Juárez Valieri, Rubén D.; Gallina, Pablo A.; Méndez, Ariel H.; Gianechini, Federico A.; Garrido, Alberto C. (2024). "A rebbachisaurid-mimicking titanosaur and evidence of a Late Cretaceous faunal disturbance event in South-West Gondwana". Cretaceous Research. 154. Bibcode:2024CrRes.15405754F. doi:10.1016/j.cretres.2023.105754. ISSN 0195-6671. S2CID 264792693.
  88. ^ Ren, X.-X.; Wang, X.-R.; Ji, Y.-N.; Guo, Z.; Ji, Q. (2024). "The first mamenchisaurid from the Upper Jurassic Dongxing Formation of Guangxi, southernmost China". Historical Biology: An International Journal of Paleobiology: 1–14. doi:10.1080/08912963.2024.2309287. S2CID 267947729.
  89. ^ "Jingia".
  90. ^ "Addendum". Historical Biology: 1. 2024-04-15. doi:10.1080/08912963.2024.2325806. ISSN 0891-2963.
  91. ^ Averianov, A. O.; Skutschas, P. P.; Atuchin, A. A.; Slobodin, D. A.; Feofanova, O. A.; Vladimirova, O. N. (2024). "The last ceratosaur of Asia: a new noasaurid from the Early Cretaceous Great Siberian Refugium". Proceedings of the Royal Society B: Biological Sciences. 291 (2023). 20240537. doi:10.1098/rspb.2024.0537. PMC 11285863. PMID 38747705.
  92. ^ Pol, Diego; Baiano, Mattia Antonio; Černý, David; Novas, Fernando E.; Cerda, Ignacio A.; Pittman, Michael (2024-05-21). "A new abelisaurid dinosaur from the end Cretaceous of Patagonia and evolutionary rates among the Ceratosauria". Cladistics. 40 (3): 307–356. doi:10.1111/cla.12583. ISSN 0748-3007. PMID 38771085.
  93. ^ Rivera-Sylva, Héctor E.; Longrich, Nicholas R. (2024). "A New Tyrant Dinosaur from the Late Campanian of Mexico Reveals a Tribe of Southern Tyrannosaurs". Fossil Studies. 2 (4): 245–272. doi:10.3390/fossils2040012.
  94. ^ Zhang, Q.; Jia, L.; Wang, T.; Zhang, Y.; You, H. (2024). "The largest sauropodomorph skull from the Lower Jurassic Lufeng Formation of China". PeerJ. 12. e18629. doi:10.7717/peerj.18629. PMC 11646418. PMID 39677945.
  95. ^ Loewen, Mark A.; Sertich, Joseph J. W.; Sampson, Scott; O’Connor, Jingmai K.; Carpenter, Savhannah; Sisson, Brock; Øhlenschlæger, Anna; Farke, Andrew A.; Makovicky, Peter J.; Longrich, Nick; Evans, David C. (2024-06-20). "Lokiceratops rangiformis gen. et sp. nov. (Ceratopsidae: Centrosaurinae) from the Campanian Judith River Formation of Montana reveals rapid regional radiations and extreme endemism within centrosaurine dinosaurs". PeerJ. 12: e17224. doi:10.7717/peerj.17224. ISSN 2167-8359. PMC 11193970. PMID 38912046.
  96. ^ Longrich, Nicholas R.; Pereda-Suberbiola, Xabier; Bardet, Nathalie; Jalil, Nour-Eddine (2024). "A new small duckbilled dinosaur (Hadrosauridae: Lambeosaurinae) from Morocco and dinosaur diversity in the late Maastrichtian of North Africa". Scientific Reports. 14 (1). 3665. Bibcode:2024NatSR..14.3665L. doi:10.1038/s41598-024-53447-9. PMC 10864364. PMID 38351204.
  97. ^ Barrett, Paul M.; Chapelle, Kimberley E.J.; Sciscio, Lara; Broderick, Timothy J.; Zondo, Michel; Munyikwa, Darlington; Choiniere, Jonah N. (2024). "A new Late Triassic sauropodomorph dinosaur from the Mid-Zambezi Basin, Zimbabwe". Acta Palaeontologica Polonica. 69 (2): 227–241. doi:10.4202/app.01100.2023.
  98. ^ Dai, Hui; Ma, Qingyu; Xiong, Can; Lin, Yu; Zeng, Hui; Tan, Chao; Wang, Jun; Zhang, Yuguang; Xing, Hai (2024-08-27). "A new late-diverging non-hadrosaurid hadrosauroid (Dinosauria: Ornithopoda) from southwest China: support for interchange of dinosaur faunas across East Asia during the Late Cretaceous". Cretaceous Research. 166: 105995. doi:10.1016/j.cretres.2024.105995. ISSN 0195-6671.
  99. ^ Mocho, P.; Escaso, F.; Marcos-Fernández, F.; Páramo, A.; Sanz, J. L.; Vidal, D.; Ortega, F. (2024). "A Spanish saltasauroid titanosaur reveals Europe as a melting pot of endemic and immigrant sauropods in the Late Cretaceous". Communications Biology. 7 (1). 1016. doi:10.1038/s42003-024-06653-0. PMC 11375222. PMID 39232208.
  100. ^ Isasmendi, E.; Cuesta, E.; Díaz-Martínez, I.; Julio Company; Sáez-Benito, P.; Viera, L. I.; Torices, A.; Pereda-Suberbiola, Xabier (2024). "Increasing the theropod record of Europe: a new basal spinosaurid from the Enciso Group of the Cameros Basin (La Rioja, Spain). Evolutionary implications and palaeobiodiversity". Zoological Journal of the Linnean Society. 202 (3): zlad193. doi:10.1093/zoolinnean/zlad193.
  101. ^ Tanaka, Tomonori; Chiba, Kentaro; Ikeda, Tadahiro; Ryan, Michael J. (September 2024). "A new neoceratopsian (Ornithischia, Ceratopsia) from the Lower Cretaceous Ohyamashimo Formation (Albian), southwestern Japan". Papers in Palaeontology. 10 (5). Bibcode:2024PPal...10E1587T. doi:10.1002/spp2.1587.
  102. ^ Lerzo, Lucas Nicolás; Gallina, Pablo Ariel; Canale, Juan Ignacio; Otero, Alejandro; Carballido, José Luis; Apesteguía, Sebastián; Makovicky, Peter Juraj (2024-01-03). "The last of the oldies: a basal rebbachisaurid (Sauropoda, Diplodocoidea) from the early Late Cretaceous (Cenomanian–Turonian) of Patagonia, Argentina". Historical Biology: 1–26. doi:10.1080/08912963.2023.2297914. ISSN 0891-2963. S2CID 266865502.
  103. ^ Zafaty, Omar; Oukassou, Mostafa; Riguetti, Facundo; Julio Company; Bendrioua, Saad; Tabuce, Rodolphe; Charrière, André; Pereda-Suberbiola, Xabier (2024-03-29). "A new stegosaurian dinosaur (Ornithischia: Thyreophora) with a remarkable dermal armour from the Middle Jurassic of North Africa". Gondwana Research. 131: 344–362. Bibcode:2024GondR.131..344Z. doi:10.1016/j.gr.2024.03.009. ISSN 1342-937X.
  104. ^ Pereira, P. V. L. G. C.; Bandeira, K. L. N.; Vidal, L. S.; Ribeiro, T. B.; Candeiro, C. R. A.; Bergqvist, L. P. (2024). "A new sauropod species from north-western Brazil: biomechanics and the radiation of Titanosauria (Sauropoda: Somphospondyli)". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae054.
  105. ^ a b Bandeira, K. L. N.; Navarro, B. A.; Pêgas, R. V.; Brilhante, N. S.; Brum, A. S.; de Souza, L. G.; da Silva, R. C.; Gallo, V. (2024). "A reassessment of the historical fossil findings from Bahia State (Northeast Brazil) reveals a diversified dinosaur fauna in the Lower Cretaceous of South America". Historical Biology: An International Journal of Paleobiology: 1–42. doi:10.1080/08912963.2024.2318406.
  106. ^ Pérez-Moreno, A.; Salgado, L.; Carballido, J. L.; Otero, A.; Pol, D. (2024). "A new titanosaur from the La Colonia Formation (Campanian-Maastrichtian), Chubut Province, Argentina". Historical Biology: An International Journal of Paleobiology: 1–20. doi:10.1080/08912963.2024.2332997.
  107. ^ Dalman, S. G; Loewen, M. A.; Pyron, R. A.; Jasinski, S. E.; Malinzak, D. E.; Lucas, S. G.; Fiorillo, A. R.; Currie, P. J.; Longrich, N. R. (2024). "A giant tyrannosaur from the Campanian–Maastrichtian of southern North America and the evolution of tyrannosaurid gigantism". Scientific Reports. 13 (1). Article number 22124. doi:10.1038/s41598-023-47011-0. PMC 10784284. PMID 38212342.
  108. ^ Soto, M.; Carballido, J. L.; Langer, M. C.; Silva Junior, J. C. G.; Montenegro, F.; Perea, D. (2024). "Phylogenetic relationships of a new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Uruguay". Cretaceous Research. 160. 105894. Bibcode:2024CrRes.16005894S. doi:10.1016/j.cretres.2024.105894.
  109. ^ Wang, Shuo; Ding, Nuo; Tan, Qingwei; Yang, Rui; Zhang, Qiyue; Tan, Lin (2024-07-17). "A new Urbacodon (Theropoda, Troodontidae) from the Upper Cretaceous Iren Dabasu Formation, China: Implications for troodontid phylogeny and tooth biology". Cladistics. doi:10.1111/cla.12592. ISSN 0748-3007. PMID 39016633.
  110. ^ Longrich, Nicholas R.; Martill, David M.; Munt, Martin; Green, Mick; Penn, Mark; Smith, Shaun (2024). "Vectidromeus insularis, a new hypsilophodontid dinosaur from the Lower Cretaceous Wessex Formation of the Isle of Wight, England". Cretaceous Research. 154: 105707. Bibcode:2024CrRes.15405707L. doi:10.1016/j.cretres.2023.105707. ISSN 0195-6671. S2CID 261933503.
  111. ^ Jia, Lei; Li, Ning; Dong, Liyang; Shi, Jianru; Kang, Zhishuai; Wang, Suozhu; Xu, Shichao; You, Hailu (2024-01-31). "A new stegosaur from the late Early Cretaceous of Zuoyun, Shanxi Province, China". Historical Biology: 1–10. doi:10.1080/08912963.2024.2308214. ISSN 0891-2963. S2CID 267465456.
  112. ^ Hao, M.; Li, Z.; Wang, Z.; Wang, S.; Ma, F.; Qinggele; King, J. L.; Pei, R.; Zhao, Q.; Xu, X. (2024). "A new oviraptorosaur from the Lower Cretaceous Miaogou Formation of western Inner Mongolia, China". Cretaceous Research. 167. 106023. doi:10.1016/j.cretres.2024.106023.
  113. ^ Lovegrove, J.; Upchurch, P.; Barrett, P. M. (2024). "Untangling the tree or unravelling the consensus? Recent developments in the quest to resolve the broad-scale relationships within Dinosauria". Journal of Systematic Palaeontology. 22 (1). 2345333. Bibcode:2024JSPal..2245333L. doi:10.1080/14772019.2024.2345333.
  114. ^ Chiarenza, A. A. (2024). "The macroecology of Mesozoic dinosaurs". Biology Letters. 20 (11). 20240392. doi:10.1098/rsbl.2024.0392. PMC 11558851. PMID 39535111.
  115. ^ Mannion, P. D. (2024). "The spatiotemporal distribution of Mesozoic dinosaur diversity". Biology Letters. 20 (12). 20240443. doi:10.1098/rsbl.2024.0443. PMC 11632528. PMID 39660360.
  116. ^ Balanoff, A. (2024). "Dinosaur palaeoneurology: an evolving science". Biology Letters. 20 (12). 20240472. doi:10.1098/rsbl.2024.0472. PMC 11651910. PMID 39689851.
  117. ^ Aguilar-Pedrayes, I.; Gardner, J. D.; Organ, C. L. (2024). "The coevolution of rostral keratin and tooth distribution in dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 291 (2015). 20231713. doi:10.1098/rspb.2023.1713. PMC 10792295. PMID 38229513.
  118. ^ Kunz, C; Sakamoto, M (2024). "Elevated evolutionary rates of biting biomechanics reveal patterns of extraordinary craniodental adaptations in some herbivorous dinosaurs". Palaeontology. 67 (1): 12689. Bibcode:2024Palgy..6712689K. doi:10.1111/pala.12689.
  119. ^ Herculano-Houzel, S. (2023). "Theropod dinosaurs had primate-like numbers of telencephalic neurons". Journal of Comparative Neurology. 531 (9): 962–974. doi:10.1002/cne.25453. PMID 36603059. S2CID 249994109.
  120. ^ Caspar, K. R.; Gutiérrez-Ibáñez, C.; Bertrand, O. C.; Carr, T.; Colbourne, J. A. D.; Erb, A.; George, H.; Holtz, T. R.; Naish, D.; Wylie, D. R.; Hurlburt, G. R. (2024). "How smart was T. rex? Testing claims of exceptional cognition in dinosaurs and the application of neuron count estimates in palaeontological research". The Anatomical Record. 307 (12): 3685–3716. doi:10.1002/ar.25459. PMID 38668805.
  121. ^ King, L.; Zhao, Q.; Dufeau, D. L.; Kawabe, S.; Witmer, L.; Zhou, C.-F.; Rayfield, E. J.; Benton, M. J.; Watanabe, A. (2024). "Endocranial development in non-avian dinosaurs reveals an ontogenetic brain trajectory distinct from extant archosaurs". Nature Communications. 15 (1). 7415. Bibcode:2024NatCo..15.7415K. doi:10.1038/s41467-024-51627-9. PMC 11358377. PMID 39198439.
  122. ^ Atterholt, J.; Wedel, M. J.; Tykoski, R.; Fiorillo, A. R.; Holwerda, F.; Nalley, T. K.; Lepore, T.; Yasmer, J. (2024). "Neural canal ridges: A novel osteological correlate of postcranial neuroanatomy in dinosaurs". The Anatomical Record. doi:10.1002/ar.25558. PMID 39192616.
  123. ^ Chiarenza, A. A.; Cantalapiedra, J. L.; Jones, L. A.; Gamboa, S.; Galván, S.; Farnsworth, A. J.; Valdes, P. J.; Sotelo, G.; Varela, S. (2024). "Early Jurassic origin of avian endothermy and thermophysiological diversity in dinosaurs". Current Biology. 34 (11): 2517–2527.e4. Bibcode:2024CBio...34.2517C. doi:10.1016/j.cub.2024.04.051. PMID 38754424.
  124. ^ Upchurch, P.; Chiarenza, A. A. (2024). "A brief review of non-avian dinosaur biogeography: state-of-the-art and prospectus". Biology Letters. 20 (10). 20240429. doi:10.1098/rsbl.2024.0429. PMC 11529633. PMID 39471833.
  125. ^ Qvarnström, M.; Vikberg Wernström, J.; Wawrzyniak, Z.; Barbacka, M.; Pacyna, G.; Górecki, A.; Ziaja, J.; Jarzynka, A.; Owocki, K.; Sulej, T.; Marynowski, L.; Pieńkowski, G.; Ahlberg, P. E.; Niedźwiedzki, G. (2024). "Digestive contents and food webs record the advent of dinosaur supremacy". Nature. 636 (8042): 397–403. doi:10.1038/s41586-024-08265-4. PMC 11634772. PMID 39604731.
  126. ^ Perillo, M.; Sander, P. M. (2024). "The dinosaurs that weren't: osteohistology supports giant ichthyosaur affinity of enigmatic large bone segments from the European Rhaetian". PeerJ. 12. e17060. doi:10.7717/peerj.17060. PMC 11011611. PMID 38618574.
  127. ^ Romilio, A.; Dick, R.; Skinner, H.; Millar, J. (2024). "Uncovering hidden footprints: revision of the Lower Jurassic (Sinemurian) Razorback Beds – home to Australia's earliest reported dinosaur trackway". Historical Biology: 1–8. doi:10.1080/08912963.2024.2320184.
  128. ^ Troiano, L. P.; dos Santos, H. B.; Aureliano, T.; Ghilardi, A. M. (2024). "A remarkable assemblage of petroglyphs and dinosaur footprints in Northeast Brazil". Scientific Reports. 14 (1). 6528. Bibcode:2024NatSR..14.6528T. doi:10.1038/s41598-024-56479-3. PMC 10948842. PMID 38499621.
  129. ^ Khosla, A.; Lucas, S. G. (2024). "Triassic-Jurassic dinosaurs from India, their ages and palaeobiogeographic significance". Historical Biology: An International Journal of Paleobiology: 1–26. doi:10.1080/08912963.2024.2336992.
  130. ^ Maidment, S.C.R. (2024). "Diversity through time and space in the Upper Jurassic Morrison Formation, western U.S.A.". Journal of Vertebrate Paleontology. 43 (5). e2326027. doi:10.1080/02724634.2024.2326027.
  131. ^ Martin, A. J.; Lowery, M.; Hall, M.; Rich, T. H.; Seegets-Villiers, D. E.; Swinkels, P.; Broomfield, J.; Vickers-Rich, P. (2024). "Polar dinosaur tracks of the Wonthaggi Formation (Lower Cretaceous), Victoria, Australia and their palaeontological significance". Alcheringa: An Australasian Journal of Palaeontology: 1–23. doi:10.1080/03115518.2024.2392498.
  132. ^ Li, Y.; Zhao, H.; Foster, W. J.; Yu, Y.; Xing, L.; Ye, Q.; Wang, C.; Yao, H. (2024). "First discovery of dinosaur tracks from the Lower Cretaceous Duoni Formation in eastern Tibet, China". Cretaceous Research. 166. 106009. doi:10.1016/j.cretres.2024.106009.
  133. ^ Kirkland, J.I.; Sertich, J.J.W.; Titus, A.L. (2024). "Dinosaur biostratigraphy of the Nonmarine Cretaceous of Utah". Geological Society, London, Special Publications. 545 (1): 211. Bibcode:2024GSLSP.545..211K. doi:10.1144/SP545-2023-211.
  134. ^ Han, F.; Han, Y.; Zhou, X.; Wang, H.; Qin, H.; Wang, Q.; Deng, C. (2024). "Climate change contributed to the disappearance of the latest Cretaceous dinosaurs in the Shanyang Basin, Central China". Palaeogeography, Palaeoclimatology, Palaeoecology. 653. 112421. Bibcode:2024PPP...65312421H. doi:10.1016/j.palaeo.2024.112421.
  135. ^ Allen, B. J.; Volkova Oliveira, M. V.; Stadler, T.; Vaughan, T. G.; Warnock, R. C. M. (2024). "Mechanistic phylodynamic models do not provide conclusive evidence that non-avian dinosaurs were in decline before their final extinction". Cambridge Prisms: Extinction. 2. e6. doi:10.1017/ext.2024.5. hdl:20.500.11850/669070.
  136. ^ Curry Rogers, K.; Martínez, R. N.; Colombi, C.; Rogers, R. R.; Alcober, O. (2024). "Osteohistological insight into the growth dynamics of early dinosaurs and their contemporaries". PLOS ONE. 19 (4). e0298242. Bibcode:2024PLoSO..1998242C. doi:10.1371/journal.pone.0298242. PMC 10990230. PMID 38568908.
  137. ^ Chen, X.; Xing, L.; Zhang, H.; Chen, Q.; Yang, J.; Jin, Y.; Zhu, N.; Teng, C. (2024). "Newly discovered tracksites from Middle Jurassic Chaya Group of Eastern Tibet, China, with the implications of saurischian distribution in around the eastern Tethys". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2024.2439936.
  138. ^ Yuan, T.; Xu, H.; Jiang, X.; Liu, Y.; Kuang, H.; Peng, N.; Chen, J.; Cen, C. (2024). "Late Jurassic–Early Cretaceous dinosaur track assemblages from northwestern Hebei Province, China: implications for paleoenvironment and paleoecology". Cretaceous Research. 163. 105960. Bibcode:2024CrRes.16305960Y. doi:10.1016/j.cretres.2024.105960.
  139. ^ Paio, Vinícius José Maróstica; Jurigan, Isabela; Delcourt, Rafael; de Faria, Rafael Souza; Batezelli, Alessandro; Ricardi-Branco, Fresia (2024-08-01). "Taphonomy and paleohistology of a dinosaur rib from Marília Formation, Bauru Group, in the state of Minas Gerais, Brazil". Cretaceous Research. 160: 105899. Bibcode:2024CrRes.16005899P. doi:10.1016/j.cretres.2024.105899. ISSN 0195-6671.
  140. ^ Manafzadeh, A. M.; Gatesy, S. M.; Nyakatura, J. A.; Bhullar, B.-A. S. (2024). "Fibular reduction and the evolution of theropod locomotion". Nature. 637 (8044): 113–117. doi:10.1038/s41586-024-08251-w. PMID 39567698.
  141. ^ Pintore, R.; Hutchinson, J. R.; Bishop, P. J.; Tsai, H. P.; Houssaye, A. (2024). "The evolution of femoral morphology in giant non-avian theropod dinosaurs". Paleobiology. 50 (2): 308–329. Bibcode:2024Pbio...50..308P. doi:10.1017/pab.2024.6. PMC 7616063. PMID 38846629.
  142. ^ Barker, C. T.; Handford, L.; Naish, D.; Wills, S.; Hendrickx, C.; Hadland, P.; Brockhurst, D.; Gostling, N. J. (2024). "Theropod dinosaur diversity of the lower English Wealden: analysis of a tooth-based fauna from the Wadhurst Clay Formation (Lower Cretaceous: Valanginian) via phylogenetic, discriminant and machine learning methods". Papers in Palaeontology. 10 (6). e1604. doi:10.1002/spp2.1604.
  143. ^ Dridi, J.; Houla, Y.; Salhi, I.; Zagrarni, M. F. (2024). "Evidence of theropod dinosaurs in the upper Hauterivian–lower Barremian of Jebel Kebar (central Tunisia): paleobiogeographic implications". Journal of African Earth Sciences. 216. 105306. Bibcode:2024JAfES.21605306D. doi:10.1016/j.jafrearsci.2024.105306.
  144. ^ Meso, J. G.; Gianechini, F.; Gomez, K. L.; Muci, L.; Baiano, M. A.; Pol, D.; Kaluza, J.; Garrido, A.; Pittman, M. (2024). "Shed teeth from Portezuelo formation at Sierra del Portezuelo reveal a higher diversity of predator theropods during Turonian-Coniacian times in northern Patagonia". BMC Ecology and Evolution. 24 (1). 59. Bibcode:2024BMCEE..24...59M. doi:10.1186/s12862-024-02249-8. PMC 11083846. PMID 38730384.
  145. ^ Isasmendi, E.; Pérez-Pueyo, M.; Moreno-Azanza, M.; Alonso, A.; Puértolas-Pascual, E.; Bádenas, B.; Canudo, J. I. (2024). "Theropod teeth palaeodiversity from the uppermost Cretaceous of the South Pyrenean Basin (NE Iberia) and the intra-Maastrichtian faunal turnover". Cretaceous Research. 162. 105952. Bibcode:2024CrRes.16205952I. doi:10.1016/j.cretres.2024.105952.
  146. ^ Wu, R.; Lou, F.; Yu, J.; Xue, Y.; Zhang, S.; Yang, L.; Qiu, W.; Wang, H.; Han, F. (2024). "The smallest known complete dinosaur fossil eggs from the Upper Cretaceous of South China". Historical Biology: An International Journal of Paleobiology: 1–10. doi:10.1080/08912963.2024.2409873.
  147. ^ McLarty, J. A.; Esperante, R. (2024). "Stops and Turns: Uncommonly Preserved Theropod Locomotive Behavior Patterns in an Upper Cretaceous Tracksite from Torotoro National Park, Bolivia". Journal of South American Earth Sciences. 143. 105011. Bibcode:2024JSAES.14305011M. doi:10.1016/j.jsames.2024.105011.
  148. ^ Bugos, J. E.; McDavid, S. N. (2024). "Immature skulls of the theropod dinosaur Coelophysis bauri from Ghost Ranch, New Mexico". Acta Palaeontologica Polonica. 69 (4): 549–563. doi:10.4202/app.01085.2023.
  149. ^ Marsh, A.; De Blieux, D.; Kirkland, J. (2024). "The first dinosaur postcranial body fossils from the Lower Jurassic Kayenta Formation of Utah". Geology of the Intermountain West. 11 (45–57). doi:10.31711/giw.v11.
  150. ^ Liang, Q.; Falkingham, P. L.; Xing, L. (2024). "Virtual skeleton and body mass for revealing the life strategies of Sinosaurus". Historical Biology: An International Journal of Paleobiology: 1–15. doi:10.1080/08912963.2024.2385615.
  151. ^ Hendrickx, Christophe; Cerroni, Mauricio A; Agnolín, Federico L; Catalano, Santiago; Ribeiro, Cátia F; Delcourt, Rafael (2024-12-01). "Osteology, relationship, and feeding ecology of the theropod dinosaur Noasaurus leali, from the Late Cretaceous of North-Western Argentina". Zoological Journal of the Linnean Society. 202 (4). doi:10.1093/zoolinnean/zlae150. ISSN 0024-4082.
  152. ^ Mohabey, D. M.; Samant, B.; Vélez-Rosado, K. I.; Wilson Mantilla, J. A. (2024). "A review of small-bodied theropod dinosaurs from the Upper Cretaceous of India, with description of new cranial remains of a noasaurid (Theropoda: Abelisauria)". Journal of Vertebrate Paleontology. 43 (3). e2288088. doi:10.1080/02724634.2023.2288088.
  153. ^ Hendrickx, C.; Trapman, T. H.; Wills, S.; Holwerda, F. M.; Stein, K. H. W.; Rauhut, O. W. M.; Melzer, R. R.; Van Woensel, J.; Reumer, J. W. F. (2024). "A combined approach to identify isolated theropod teeth from the Cenomanian Kem Kem Group of Morocco: cladistic, discriminant, and machine learning analyses". Journal of Vertebrate Paleontology. 43 (4). e2311791. doi:10.1080/02724634.2024.2311791.
  154. ^ Pradelli, L. A.; Pol, D.; Ezcurra, M. D. (2024). "New dinosaur remains increase theropod diversity in the Cañadón Asfalto Formation (Lower Jurassic), Chubut Province, Argentina". Journal of Systematic Palaeontology. 22 (1). 2318262. Bibcode:2024JSPal..2218262P. doi:10.1080/14772019.2024.2318262.
  155. ^ Delcourt, R.; Brilhante, N. S.; Pires-Domingues, R. A.; Hendrickx, C.; Grillo, O. N.; Augusta, B. G.; Maciel, B. S.; Ghilardi, A. M.; Ricardi-Branco, F. (2024). "Biogeography of theropod dinosaurs during the Late Cretaceous: evidence from central South America". Zoological Journal of the Linnean Society. 202 (2). doi:10.1093/zoolinnean/zlad184.
  156. ^ Ribeiro, T. B.; Cupello, C.; de Mayrink, D.; Pereira, P. V. L. G. C.; Brito, P. M. (2024). "A theropod tooth from the Missão Velha Formation (Late Jurassic-Early Cretaceous) of the Araripe Basin: oldest Brazilian Abelisaurid record". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2024.2336982.
  157. ^ Aureliano, T.; Ghilardi, A. M.; Fonseca, P. H. M.; Martinelli, A. G.; Marinho, T. S. (2024). "The evolution and diversification of growth strategies in abelisauroid theropods". Journal of Vertebrate Paleontology. 43 (3). e2298395. doi:10.1080/02724634.2023.2298395.
  158. ^ Candeiro, C. R. A.; Ribeiro, T. B.; Paula, T. A.; Pereira, P. V. L. G. C.; Vidal, L.; Gil, L. M.; Dias, T.; Gonzalez-Riga, B.; Brusatte, S. L.; Carabajal, A. P. (2024). "Isolated theropod teeth from the Upper Cretaceous of Goias State (Brazil): northernmost occurrence of Abelisauridae from the Bauru Basin". Journal of South American Earth Sciences. 146. 105075. Bibcode:2024JSAES.14605075C. doi:10.1016/j.jsames.2024.105075.
  159. ^ Baiano, M. A.; Cerda, I. A.; Bertozzo, F.; Pol, D. (2024). "New information on paleopathologies in non-avian theropod dinosaurs: a case study on South American abelisaurids". BMC Ecology and Evolution. 24 (1). 6. Bibcode:2024BMCEE..24....6B. doi:10.1186/s12862-023-02187-x. PMC 10829224. PMID 38291378.
  160. ^ Cerroni, M. A.; Otero, A.; Novas, F. E. (2024). "Appendicular myology of Skorpiovenator bustingorryi: A first attempt to reconstruct pelvic and hindlimb musculature in an abelisaurid theropod". The Anatomical Record. 308 (1): 114–162. doi:10.1002/ar.25532. PMID 38989612.
  161. ^ Malafaia, E.; Escaso, F.; Coria, R. A.; Pérez-García, A.; Ortega, F. (2024). "Theropod teeth from the Upper Cretaceous of central Spain: assessing the paleobiogeographic history of European abelisaurids". Cretaceous Research. 106072. doi:10.1016/j.cretres.2024.106072.
  162. ^ Aureliano, T.; Almeida, W.; Rasaona, M.; Ghilardi, A. M. (2024). "The evolution of the air sac system in theropod dinosaurs: Evidence from the Upper Cretaceous of Madagascar". Journal of Anatomy. doi:10.1111/joa.14113. PMID 39022807.
  163. ^ Cau, A. (2024). "A Unified Framework for Predatory Dinosaur Macroevolution" (PDF). Bollettino della Società Paleontologica Italiana. 63 (1): 1–19. doi:10.4435/BSPI.2024.08 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  164. ^ Montealegre, A.; Castillo-Visa, O.; Sellés, A. (2024). "New theropod remains from the late Barremian (Early Cretaceous) of Eastern Iberian Peninsula". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2024.2308220. S2CID 267374161.
  165. ^ Lacerda, M. B. S.; Isasmendi, E.; Delcourt, R.; Fernandes, M. A.; Hutchinson, J. R. (2024). "New theropod dinosaur remains from the Upper Cretaceous of the Kem Kem Group (Eastern Morocco) clarify spinosaurid morphology". Zoological Journal of the Linnean Society. 202 (2). zlae109. doi:10.1093/zoolinnean/zlae109.
  166. ^ Yun, Chan-gyu (2024). "Spinosaurs as phytosaur mimics: a case of convergent evolution between two extinct archosauriform clades". Acta Palaeontologica Romaniae. 20 (1): 17–29. doi:10.35463/j.apr.2024.01.02.
  167. ^ D'Amore, D. C.; Johnson-Ransom, E.; Snively, E.; Hone, D. W. E. (2024). "Prey size and ecological separation in spinosaurid theropods based on heterodonty and rostrum shape". The Anatomical Record. doi:10.1002/ar.25563. PMID 39205383.
  168. ^ Cabrera-Argudo, P.; García-Cobeña, J.; Cobos, A. (2024). "Variability of spinosaurid teeth in the Barremian of the province of Teruel (eastern Spain)". Journal of Iberian Geology. doi:10.1007/s41513-024-00269-3.
  169. ^ Zitouni, S.; Laurent, C.; Dyke, G.; Jalil, N.-E. (2019). "An abelisaurid (Dinosauria: Theropoda) ilium from the Upper Cretaceous (Cenomanian) of the Kem Kem beds, Morocco". PLOS ONE. 14 (4): e0214055. Bibcode:2019PLoSO..1414055Z. doi:10.1371/journal.pone.0214055. PMC 6445567. PMID 30939139.
  170. ^ Samathi, A. (2024). "Reassessment of a theropod ilium from the Kem Kem beds of Morocco and the evolution of ilia in Spinosauridae". Cretaceous Research. 166. 106007. doi:10.1016/j.cretres.2024.106007.
  171. ^ Fabbri, Matteo; Navalón, Guillermo; Benson, Roger B. J.; Pol, Diego; O’Connor, Jingmai; Bhullar, Bhart-Anjan S.; Erickson, Gregory M.; Norell, Mark A.; Orkney, Andrew; Lamanna, Matthew C.; Zouhri, Samir; Becker, Justine; Emke, Amanda; Dal Sasso, Cristiano; Bindellini, Gabriele; Maganuco, Simone; Auditore, Marco; Ibrahim, Nizar (2022-03-31). "Subaqueous foraging among carnivorous dinosaurs". Nature. 603 (7903): 852–857. Bibcode:2022Natur.603..852F. doi:10.1038/s41586-022-04528-0. ISSN 0028-0836. PMID 35322229. S2CID 247630374.
  172. ^ Myhrvold, Nathan P.; Baumgart, Stephanie L.; Vidal, Daniel; Fish, Frank E.; Henderson, Donald M.; Saitta, Evan T.; Sereno, Paul C. (2024-03-06). "Diving dinosaurs? Caveats on the use of bone compactness and pFDA for inferring lifestyle". PLOS ONE. 19 (3): e0298957. Bibcode:2024PLoSO..1998957M. doi:10.1371/journal.pone.0298957. ISSN 1932-6203. PMC 10917332. PMID 38446841.
  173. ^ Smart, S.; Sakamoto, M. (2024). "Using linear measurements to diagnose the ecological habitat of Spinosaurus". PeerJ. 12. e17544. doi:10.7717/peerj.17544. PMC 11180429. PMID 38881866.
  174. ^ Buffetaut, E.; Tong, H. (2024). "The first discovery of spinosaurid remains in Asia: Thailand, 1962". Annales de Paléontologie. 110 (1). 102664. Bibcode:2024AnPal.11002664B. doi:10.1016/j.annpal.2024.102664.
  175. ^ Liang, Q.; Xing, L.; Falkingham, P. L.; Du, C.; Wen, K.; Lin, J. (2024). "Forearm range of motion in Allosaurus fragilis (Dinosauria: Theropoda)". Historical Biology: An International Journal of Paleobiology: 1–12. doi:10.1080/08912963.2024.2403599.
  176. ^ Averianov, A. O.; Sues, H.-D. (2024). "New evidence for the presence of carcharodontosaurid theropod dinosaurs in the Late Cretaceous of Uzbekistan". Historical Biology: An International Journal of Paleobiology: 1–7. doi:10.1080/08912963.2024.2423675.
  177. ^ Rolando, Alexis M. Aranciaga; Motta, Matías J.; Agnolín, Federico L.; Tsuihiji, Takanobu; Miner, Santiago; Brissón-Egli, Federico; Novas, Fernando E. (2024-10-09). "A new carcharodontosaurid specimen sheds light on the anatomy of South American giant predatory dinosaurs". The Science of Nature. 111 (6): 56. Bibcode:2024SciNa.111...56R. doi:10.1007/s00114-024-01942-4. ISSN 1432-1904. PMID 39382666.
  178. ^ Rowe, A. J.; Rayfield, E. J. (2024). "Morphological evolution and functional consequences of giantism in tyrannosauroid dinosaurs". iScience. 27 (9). 110679. Bibcode:2024iSci...27k0679R. doi:10.1016/j.isci.2024.110679. PMC 11387897. PMID 39262785.
  179. ^ Ke, Y.-H.; Pei, R.; Xu, X. (2024). "High-resolution CT-scan data reveals the tooth replacement pattern of the Late Jurassic tyrannosauroid Guanlong wucaii (Dinosauria, Theropoda)". Vertebrata PalAsiatica. 62 (3): 225–244. doi:10.19615/j.cnki.2096-9899.240715.
  180. ^ Chowchuvech, W.; Manitkoon, S.; Chanthasit, P.; Ketwetsuriya, C. (2024). "The First Occurrence of a Basal Tyrannosauroid in Southeast Asia: Dental Evidence from the Upper Jurassic of Northeastern Thailand". Tropical Natural History. 24: 84–95.
  181. ^ Xing, L.; Liang, Z.; Zhang, K.; Wang, D.; Zhang, X.; Persons, W. S.; Ren, Z.; Liang, Z.; Xian, M.; Zeng, Q. (2024). "Large theropod teeth from the Upper Cretaceous of Guangdong Province, Southern China". Cretaceous Research. 161. 105914. Bibcode:2024CrRes.16105914X. doi:10.1016/j.cretres.2024.105914.
  182. ^ LeBlanc, A. R. H.; Morrell, A. P.; Sirovica, S.; Al-Jawad, M.; Labonte, D.; D'Amore, D. C.; Clemente, C.; Wang, S.; Giuliani, F.; McGilvery, C. M.; Pittman, M.; Kaye, T. G.; Stevenson, C.; Capon, J.; Tapley, B.; Spiro, S.; Addison, O. (2024). "Iron-coated Komodo dragon teeth and the complex dental enamel of carnivorous reptiles". Nature Ecology & Evolution. 8 (9): 1711–1722. Bibcode:2024NatEE...8.1711L. doi:10.1038/s41559-024-02477-7. PMC 11383799. PMID 39048730.
  183. ^ Słowiak, J.; Brusatte, S. L.; Szczygielski, T. (2024). "Reassessment of the enigmatic Late Cretaceous theropod dinosaur, Bagaraatan ostromi". Zoological Journal of the Linnean Society. 202 (3): zlad169. doi:10.1093/zoolinnean/zlad169.
  184. ^ Yun, C.-G. (2024). "Mandibular force profiles of Alioramini (Theropoda: Tyrannosauridae) with implications for palaeoecology of this unique lineage of tyrannosaurid dinosaurs". Lethaia. 57 (2): 1–12. Bibcode:2024Letha..57....1Y. doi:10.18261/let.57.2.6.
  185. ^ Coppock, C.; Powers, M. J.; Voris, J. T.; Sharpe, H. S.; Currie, P. J. (2024). "Immature Daspletosaurus sp. specimens from the Dinosaur Park Formation provide insight into ontogenetically invariant tyrannosaurid cranial morphology". Canadian Journal of Earth Sciences. 61 (12): 1227–1239. Bibcode:2024CaJES..61.1227C. doi:10.1139/cjes-2024-0083.
  186. ^ Scherer, C. R.; Voiculescu-Holvad, C. (2023). "Re-analysis of a dataset refutes claims of anagenesis within Tyrannosaurus-line tyrannosaurines (Theropoda, Tyrannosauridae)". Cretaceous Research. 155. 105780. doi:10.1016/j.cretres.2023.105780.
  187. ^ Warshaw, E. A.; Barrera Guevara, D.; Fowler, D. W. (2024). "Anagenesis and the tyrant pedigree: a response to "Re-analysis of a dataset refutes claims of anagenesis within Tyrannosaurus-line tyrannosaurines (Theropoda, Tyrannosauridae)"". Cretaceous Research. 163. 105957. Bibcode:2024CrRes.16305957W. doi:10.1016/j.cretres.2024.105957.
  188. ^ Longrich, Nicholas R.; Saitta, Evan T. (2024-03-01). "Taxonomic Status of Nanotyrannus lancensis (Dinosauria: Tyrannosauroidea)—A Distinct Taxon of Small-Bodied Tyrannosaur". Fossil Studies. 2 (1): 1–65. doi:10.3390/fossils2010001. eISSN 2813-6284.
  189. ^ Mallon, J. C.; Hone, D. W. E. (2024). "Estimation of maximum body size in fossil species: A case study using Tyrannosaurus rex". Ecology and Evolution. 14 (7). e11658. Bibcode:2024EcoEv..1411658M. doi:10.1002/ece3.11658. PMC 11267449. PMID 39050661.
  190. ^ Samathi, A. (2024). "Phylogenetic position of Kinnareemimus khonkaenensis (Dinosauria: Theropoda: Ornithomimosauria) from the Lower Cretaceous of Thailand". Zootaxa. 5448 (1): 67–84. doi:10.11646/zootaxa.5448.1.4. PMID 39646268.
  191. ^ Meso, J. G.; Pol, D.; Chiappe, L.; Qin, Z.; Díaz-Martínez, I.; Gianechini, F.; Apesteguía, S.; Makovicky, P. J.; Pittman, M. (2024). "Body size and evolutionary rate analyses reveal complex evolutionary history of Alvarezsauria". Cladistics. doi:10.1111/cla.12600. PMID 39660404.
  192. ^ Gianechini, F. A.; Meso, J. G.; Méndez, A. H.; Garrido, A. C.; Filippi, L. S. (2024). "A new maniraptoran femur with alvarezsaurian affinities from the Plottier Formation (Coniacian-Santonian), northern Patagonia". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2024.2414206.
  193. ^ Smith, D. K.; Gillette, D. D. (2024). "Osteology of the derived therizinosaur Nothronychus with evidence for convergence in dinosaurian evolution". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlad148.
  194. ^ Park, J.; Son, M.; Park, J.; Bang, S. Y.; Ha, J.; Moon, H.; Lee, Y.-N.; Lee, S.; Jablonski, P. G. (2024). "Escape behaviors in prey and the evolution of pennaceous plumage in dinosaurs". Scientific Reports. 14 (1). 549. Bibcode:2024NatSR..14..549P. doi:10.1038/s41598-023-50225-x. PMC 10811223. PMID 38272887.
  195. ^ Kiat, Yosef; O’Connor, Jingmai K. (2024). "Functional constraints on the number and shape of flight feathers". Proceedings of the National Academy of Sciences. 121 (8): e2306639121. Bibcode:2024PNAS..12106639K. doi:10.1073/pnas.2306639121. PMC 10895369. PMID 38346196. S2CID 267634048.
  196. ^ Wu, Q.; O'Connor, J. K.; Wang, S.; Zhou, Z. (2024). "Transformation of the pectoral girdle in pennaraptorans: critical steps in the formation of the modern avian shoulder joint". PeerJ. 12. e16960. doi:10.7717/peerj.16960. PMC 10909347. PMID 38436017.
  197. ^ Meade, L. E.; Pittman, M.; Balanoff, A.; Lautenschlager, S. (2024). "Cranial functional specialisation for strength precedes morphological evolution in Oviraptorosauria". Communications Biology. 7 (1). 436. doi:10.1038/s42003-024-06137-1. PMC 11006937. PMID 38600295.
  198. ^ Funston, G. F.; Williamson, T. E.; Brusatte, S. L. (2024). "A caenagnathid tibia (Theropoda: Oviraptorosauria) from the upper Campanian Kirtland Formation of New Mexico". Cretaceous Research. 158. 105856. Bibcode:2024CrRes.15805856F. doi:10.1016/j.cretres.2024.105856. S2CID 267601272.
  199. ^ Qiu, R.; Du, Y.; Huang, Z.; Zhu, X.; Yang, X.; Wang, Q.; Wang, X. (2024). "The osteology of the wrist of Heyuannia huangi (Oviraptorosauria) and its implications for the wrist folding mechanism". PeerJ. 12. e17669. doi:10.7717/peerj.17669.
  200. ^ Funston, G. F. (2024). "Osteology of the two-fingered oviraptorid Oksoko avarsan (Theropoda: Oviraptorosauria)". Zoological Journal of the Linnean Society. 202 (3): zlae011. doi:10.1093/zoolinnean/zlae011.
  201. ^ Zhu, X.; Wang, Q.; Wang, X. (2024). "Electron backscatter diffraction (EBSD) study of elongatoolithid eggs from China with microstructural and parataxonomic implications". Paleobiology. 50 (2): 330–345. Bibcode:2024Pbio...50..330Z. doi:10.1017/pab.2024.9.
  202. ^ Tse, Y. T.; Miller, C. V.; Pittman, M. (2024). "Morphological disparity and structural performance of the dromaeosaurid skull informs ecology and evolutionary history". BMC Ecology and Evolution. 24 (1). 39. Bibcode:2024BMCEE..24...39T. doi:10.1186/s12862-024-02222-5. PMC 11020771. PMID 38622512.
  203. ^ Wu, R.; Niu, K.; Zhang, S.; Xue, Y.; Han, F. (2024). "A new ootype of putative dromaeosaurid eggs from the Upper Cretaceous of southern China". Cretaceous Research. 161. 105909. Bibcode:2024CrRes.16105909W. doi:10.1016/j.cretres.2024.105909.
  204. ^ Motta, M. J.; Agnolín, F. L.; Brissón Egli, F.; Novas, F. E. (2024). "Unenlagiid affinities for Imperobator antarcticus (Paraves: Theropoda): paleobiogeographical implications". Ameghiniana. doi:10.5710/AMGH.13.11.2024.3604.
  205. ^ Gianechini, F. A.; Colli, L.; Makovicky, P. J. (2024). "Pelvic and hindlimb muscular reconstruction of the paravian theropod Buitreraptor gonzalezorum and its palaeobiological implications". Historical Biology: An International Journal of Paleobiology: 1–27. doi:10.1080/08912963.2023.2301674. S2CID 266994137.
  206. ^ Dececchi, T. A.; Kim, K. S.; Lockley, M. G.; Larsson, H. C. E.; Holtz, T. R.; Farlow, J. P.; Pittman, M. (2024). "Theropod trackways as indirect evidence of pre-avian aerial behavior". Proceedings of the National Academy of Sciences of the United States of America. 121 (44). e2413810121. doi:10.1073/pnas.2413810121. PMC 11536155. PMID 39432786.
  207. ^ Wang, R.; Pei, R. (2024). "The smallest known specimen of Microraptor (Dinosauria: Dromaeosauridae) from the Jiufotang Formation in northeastern China". Historical Biology: An International Journal of Paleobiology: 1–11. doi:10.1080/08912963.2024.2385604.
  208. ^ Yun, C.-G. (2024). "Mandibular biomechanics of Acheroraptor temertyorum (Theropoda: Dromaeosauridae) with implications for the feeding ecology and behaviour". Mesozoic. 1 (4): 459–468. doi:10.11646/mesozoic.1.4.3.
  209. ^ Manafzadeh, Armita R.; Gatesy, Stephen M.; Bhullar, Bhart-Anjan S. (2024). "Articular surface interactions distinguish dinosaurian locomotor joint poses". Nature Communications. 15 (1). 854. Bibcode:2024NatCo..15..854M. doi:10.1038/s41467-024-44832-z. PMC 10873393. PMID 38365765.
  210. ^ Yu, C.; Watanabe, A.; Qin, Z.; King, J. L.; Witmer, L. M.; Ma, Q.; Xu, X. (2024). "Avialan-like brain morphology in Sinovenator (Troodontidae, Theropoda)". Communications Biology. 7 (1). 168. doi:10.1038/s42003-024-05832-3. PMC 10858883. PMID 38341492.
  211. ^ Xing, L.; Niu, K.; Lockley, M. G.; Romilio, A.; Deng, K.; Persons, W. S. (2024). "Deinonychosaur trackways in southeastern China record a possible giant troodontid". iScience. 27 (5). 109598. Bibcode:2024iSci...27j9598X. doi:10.1016/j.isci.2024.109598. PMC 11123545. PMID 38799075.
  212. ^ Frauenfelder, T. G.; Birch, S. A.; Bell, P. R.; Campione, N. E. (2024). "Revealing the use of dental indices to infer taxonomic variation in sauropod dinosaurs". Palaeontology. 67 (5). e12725. Bibcode:2024Palgy..6712725F. doi:10.1111/pala.12725.
  213. ^ Müller, R. T.; Damke, L. V. S.; Terras, R. (2024). "Skeletally immature individuals nest together in the phylogenetic tree of early dinosaurs". Anais da Academia Brasileira de Ciências. 96 (Suppl. 1). e20231248. doi:10.1590/0001-3765202420231248.
  214. ^ Damke, L. V. S.; Langer, M. C.; Da-Rosa, Á. A. S.; Müller, R. T. (2024). "New specimens of Saturnalia tupiniquim (Dinosauria: Sauropodomorpha): insights into intraspecific variation, rostral anatomy, and skull size". Zoological Journal of the Linnean Society. 202 (4). zlae156. doi:10.1093/zoolinnean/zlae156.
  215. ^ Silva, F. O.; Martinelli, A. G.; Pretto, F.; Ferigolo, J.; Ribeiro, A. M. (2024). "First Sauropodomorpha (Dinosauria) for the Vila Botucaraí site (Hyperodapedon Assemblage Zone, Candelária Sequence), Rio Grande do Sul, Brazil". Journal of South American Earth Sciences. 140. 104927. Bibcode:2024JSAES.14004927O. doi:10.1016/j.jsames.2024.104927.
  216. ^ Regalado Fernández, O. R. (2024). "Variability of vertebral laminae in eight specimens of Plateosaurus (Saurischia, Sauropodomorpha)". Revue de Paléobiologie, Genève. 43 (1): 85–100.
  217. ^ Schaeffer, J. (2024). "Osteological redescription of the holotype of Plateosaurus trossingensis (Dinosauria: Sauropodomorpha) from the Upper Triassic of SW Germany and its phylogenetic implications". Journal of Systematic Palaeontology. 22 (1). 2335387. Bibcode:2024JSPal..2235387S. doi:10.1080/14772019.2024.2335387.
  218. ^ Schaeffer, J.; Wolff, E.; Witzmann, F.; Ferreira, G. S.; Schoch, R. R.; Mujal, E. (2024). "Paleobiological implications of chevron pathology in the sauropodomorph Plateosaurus trossingensis from the Upper Triassic of SW Germany". PLOS ONE. 19 (7). e0306819. Bibcode:2024PLoSO..1906819S. doi:10.1371/journal.pone.0306819. PMC 11290664. PMID 39083447.
  219. ^ Zhao, R.; Zhang, S.; You, H.; Wang, Y.; Zhang, Q.; Wang, T. (2024). "A new specimen of the early-branching sauropodomorph dinosaur from the Chuanjie Basin, Lufeng, Yunnan Province". Acta Palaeontologica Sinica. 63 (1): 102–111. doi:10.19800/j.cnki.aps.2023030.
  220. ^ Wang, Y.-M.; Zhao, Q.; You, H.-L. (2024). "Reassessment of 'Gyposaurus' sinensis Young, 1941 (Dinosauria: Sauropodomorpha) from the Early Jurassic Lufeng Basin, Yunnan Province, China". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae032.
  221. ^ Reisz, R. R.; Huang, T. D.; Chen, C.-M.; Tu, S.-J.; Tsai, T.-C.; Zhong, SM.; Mooney, E. D.; Bevitt, J. J. (2024). "Parental feeding in the dinosaur Lufengosaurus revealed through multidisciplinary comparisons with altricial and precocious birds". Scientific Reports. 14 (1). 20309. Bibcode:2024NatSR..1420309R. doi:10.1038/s41598-024-70981-8. PMC 11366746. PMID 39218914.
  222. ^ Barrett, P. M.; Choiniere, J. N. (2024). "Melanorosaurus readi Haughton, 1924 (Dinosauria, Sauropodomorpha) from the Late Triassic of South Africa: osteology and designation of a lectotype". Journal of Vertebrate Paleontology. 44 (1). e2337802. Bibcode:2024JVPal..44E7802B. doi:10.1080/02724634.2024.2337802.
  223. ^ D'Emic, M. D.; Finch, S. P.; Britt, B. B.; Wilson Mantilla, J. A. (2024). "Increased sampling reveals the complex evolution of sauropod dinosaur tooth replacement rates". Journal of Anatomy. doi:10.1111/joa.14169. PMID 39706808.
  224. ^ Kareem, T. A.; Chakraborty, S.; Wilson Mantilla, J. A. (2024). "Sauropod tail clubs from the Kota Formation (Lower to Middle Jurassic) of India and their implications for early sauropod evolution". Journal of Vertebrate Paleontology. 44 (1). e2396814. Bibcode:2024JVPal..44E6814K. doi:10.1080/02724634.2024.2396814.
  225. ^ Gomez, K. L.; Carballido, J. L.; Pol, D. (2024). "Cranial anatomy of Bagualia alba (Dinosauria, Eusauropoda) from the Early Jurassic of Patagonia and the implications for sauropod cranial evolution". Journal of Systematic Palaeontology. 22 (1). 2400471. Bibcode:2024JSPal..2200471G. doi:10.1080/14772019.2024.2400471.
  226. ^ Vidal, D. (2024). "Virtual sauropods: A revolution in the study of long-necked dinosaurs". Metode Science Studies Journal. 14: 77–83. doi:10.7203/metode.14.24689.
  227. ^ Agustí, J.; Alcalá, L.; Santos-Cubedo, A. (2024). "Did large foraging migrations favor the enormous body size of giant sauropods? The case of Turiasaurus". Spanish Journal of Palaeontology. 39 (1): 103–110. doi:10.7203/sjp.28176.
  228. ^ Santos, V. F.; Moratalla, J. J.; Royo-Torres, R.; Belvedere, M.; Castanera, D.; Ceríaco, L. M. P.; Mocho, P.; Merino, M.; Meyer, C. A.; Sciscio, L. (2024). "A revised name and new insights into the Middle Jurassic sauropod trackways from Portugal. A correction of Santos et al. 2009". Acta Palaeontologica Polonica. 69 (4): 587–590. doi:10.4202/app.01167.2024.
  229. ^ Butler, R. J.; Edgar, K. M.; Haller, L.; Meade, L. E.; Jones, H. T.; Hill, O.; Scriven, S.; Reedman, C. (2024). "Sauropod dinosaur tracks from the Purbeck Group (Early Cretaceous) of Spyway Quarry, Dorset, UK". Royal Society Open Science. 11 (7). 240583. Bibcode:2024RSOS...1140583B. doi:10.1098/rsos.240583. PMC 11285821. PMID 39076363.
  230. ^ Boisvert, C.; Curtice, B.; Wedel, M.; Wilhite, R. (2024). "Description of a new specimen of Haplocanthosaurus from the Dry Mesa Dinosaur Quarry". The Anatomical Record. 307 (12): 3782–3800. doi:10.1002/ar.25520. PMID 38887924.
  231. ^ King, J. L.; McHugh, J. B.; Wedel, M. J.; Curtice, B. (2024). "A previously unreported form of dorsal rib pneumaticity in Apatosaurus (Dinosauria: Sauropoda) and implications for pneumatic variation among diplodocid dorsal ribs". Journal of Vertebrate Paleontology. 43 (5). e2316665. doi:10.1080/02724634.2024.2316665.
  232. ^ Windholz, G. J.; Porfiri, J. D.; Dos Santos, D.; Bellardini, F.; Wedel, M. J. (2024). "A well-preserved vertebra provides new insights into rebbachisaurid sauropod caudal anatomical and pneumatic features". Acta Palaeontologica Polonica. 69 (1): 39–47. doi:10.4202/app.01104.2023.
  233. ^ Régent, V.; Wiersma-Weyand, K.; Wings, O.; Knötschke, N.; Sander, P. M. (2024). "The dentition of the Late Jurassic dwarf sauropod Europasaurus holgeri from northern Germany: ontogeny, function, and implications for a rhamphotheca-like structure in Sauropoda". PeerJ. 12. e17764. doi:10.7717/peerj.17764. PMC 11328839. PMID 39157772.
  234. ^ Gomes, Z. T.; Erickson, R. F.; Aureliano, T.; Ghilardi, A. M. (2024). "A new ichnosite and ichnogenus from the Lower Cretaceous Rio do Peixe Basin, Brazil, with novel insights into the evolution of Titanosauriformes". Historical Biology: An International Journal of Paleobiology: 1–15. doi:10.1080/08912963.2024.2385613.
  235. ^ Yoon, H. S.; Lee, Y.-N.; Park, E.; Lee, S. (2024). "A small sauropod trackway from the Upper Cretaceous Jindong Formation (Cenomanian), Goseong County, South Korea". Cretaceous Research. 166. 106022. doi:10.1016/j.cretres.2024.106022.
  236. ^ Gomez, K. L.; Pérez-Moreno, A.; Meso, J. G.; Bellardini, F.; Baiano, M. A.; Pol, D.; Garrido, A.; Kaluza, J.; Muci, L.; Pittman, M. (2024). "Unraveling sauropod diversity in the Portezuelo Formation of Patagonia through a comprehensive analysis of new and existing material". BMC Ecology and Evolution. 24 (1). 96. Bibcode:2024BMCEE..24...96G. doi:10.1186/s12862-024-02280-9. PMC 11234639. PMID 38982364.
  237. ^ Witasik, M.; Słowiak, J.; Szczygielski, T. (2024). "Modified laminar bone did not stop sauropods from achieving large body sizes". Journal of Vertebrate Paleontology. 44 (1). e2396816. Bibcode:2024JVPal..44E6816W. doi:10.1080/02724634.2024.2396816.
  238. ^ Beeston, S. L.; Poropat, S. F.; Mannion, P. D.; Pentland, A. H.; Enchelmaier, M. J.; Sloan, T.; Elliott, D. A. (2024). "Reappraisal of sauropod dinosaur diversity in the Upper Cretaceous Winton Formation of Queensland, Australia, through 3D digitisation and description of new specimens". PeerJ. 12. e17180. doi:10.7717/peerj.17180. PMC 11011616. PMID 38618562.
  239. ^ Filippi, L. S.; Bellardini, F.; Carballido, J. L.; Pérez-Moreno, A.; Garrido, A. C. (2024). "Sauropod diversity (Dinosauria: Sauropoda) of Cerro Overo – La Invernada (Bajo de la Carpa Formation, Santonian), northeastern Neuquén Basin, and paleoecological implications for Upper Cretaceous sauropod faunas". Publicación Electrónica de la Asociación Paleontológica Argentina. 24 (1): 71–96. doi:10.5710/PEAPA.24.02.2024.484.
  240. ^ Filippi, L. S.; Previtera, E.; Garrido, A. C. (2024). "Kaijutitan maui, a sauropod titanosaur from the Upper Cretaceous (Sierra Barrosa Formation, Neuquén Basin) of northern Patagonia Argentina: histological and taphonomic considerations". Publicación Electrónica de la Asociación Paleontológica Argentina. 24 (1): 129–148. doi:10.5710/PEAPA/26.02.2024.481.
  241. ^ Vidal, L. S.; Bergqvist, L. P.; Candeiro, C. R. A.; Bandeira, K. L. N.; Tavares, S.; Ribeiro, T. B.; Pereira, P. V. L. G. C. (2024). "Biomechanics and morphological comparisons of the caudal region of titanosaurs from the Cretaceous of Brazil: Paleobiology and paleoecology inferences". Journal of Anatomy. doi:10.1111/joa.14134. PMID 39245788.
  242. ^ Vidal, L. S.; Bergqvist, L. P.; Candeiro, C. R. A.; Bandeira, K. L. N.; Tavares, S.; Brusatte, S. L.; Pereira, P. V. L. G. V. (2024). "The axial biomechanics of Trigonosaurus pricei (Neosauropoda: Titanosauria) and the importance of the cervical–dorsal region to sauropod high-browser feeding strategy". Zoological Journal of the Linnean Society. 201 (3). zlae087. doi:10.1093/zoolinnean/zlae087.
  243. ^ Páramo, A.; Mocho, P.; Ortega, F. (2024). "Femoral diversity in titanosaur sauropods from the Villalba de la Sierra Fm. (Central Spain): Implications for the characterization of faunal turnover in the Ibero-Armorican Late Cretaceous". Cretaceous Research. 166. 105969. doi:10.1016/j.cretres.2024.105969.
  244. ^ Zurriaguz, V. L. (2024). "Variation in the postcranial pneumaticity in derived titanosaurs (Dinosauria: Sauropoda)". Historical Biology: An International Journal of Paleobiology: 1–15. doi:10.1080/08912963.2024.2377708.
  245. ^ Mocho, P.; Pérez-García, A.; Codrea, V. A. (2024). "New sauropod appendicular remains from the Upper Cretaceous of Romania: accessing the morphological variability". Cretaceous Research. 163. 105936. Bibcode:2024CrRes.16305936M. doi:10.1016/j.cretres.2024.105936.
  246. ^ Calvo, J.O (2024). "What is the most giant sauropod from Argentina? Diversity of large titanosaurs from Patagonia". Metode Science Studies Journal. 14 (14): 65–75. doi:10.7203/metode.14.24556.
  247. ^ Fonseca, A. O.; Reid, I. J.; Venner, A.; Duncan, R. J.; Garcia, M. S.; Müller, R. T. (2024). "A comprehensive phylogenetic analysis on early ornithischian evolution". Journal of Systematic Palaeontology. 22 (1). 2346577. Bibcode:2024JSPal..2246577F. doi:10.1080/14772019.2024.2346577.
  248. ^ Wills, S.; Underwood, C. J.; Barrett, P. M. (2024). "A hidden diversity of ornithischian dinosaurs: U.K. Middle Jurassic microvertebrate faunas shed light on a poorly represented period". Journal of Vertebrate Paleontology. 43 (5). e2323646. doi:10.1080/02724634.2024.2323646.
  249. ^ Hu, J.; Xu, X.; Li, F.; Han, F (2024). "Tooth replacement in the early-diverging neornithischian Jeholosaurus shangyuanensis and implications for dental evolution and herbivorous adaptation in Ornithischia". BMC Ecology and Evolution. 24 (1). 46. Bibcode:2024BMCEE..24...46H. doi:10.1186/s12862-024-02233-2. PMC 11020315. PMID 38627692.
  250. ^ Krumenacker, L. J.; Varricchio, D. J.; Organ, C.; Gardner, J. D.; Britt, B. B.; Boyd, C. (2024). "Osteology and phylogenetic relationships of the mid-Cretaceous neornithischian dinosaur Oryctodromeus cubicularis Varricchio, 2007". Journal of Vertebrate Paleontology. 43 (5). e2330581. doi:10.1080/02724634.2024.2330581.
  251. ^ Czepiński, L.; Madzia, D. (2024). "Osteology, phylogenetic affinities, and palaeobiogeographic significance of the bizarre ornithischian dinosaur Ajkaceratops kozmai from the Late Cretaceous European archipelago". Zoological Journal of the Linnean Society. 202 (4). zlae048. doi:10.1093/zoolinnean/zlae048.
  252. ^ Lee, Sang-Yoon; Lee, Yuong-Nam; Jung, Seung-Ho (1 June 2024). "A neornithischian phalanx from the Lower Cretaceous Tando beds of Ansan-si, Gyeonggi-do, South Korea". Journal of the Geological Society of Korea. 60 (2): 135–142. doi:10.14770/jgsk.2024.010.
  253. ^ Satchell, K.G. (2024). "A re-evaluation of Scelidosaurus remains from Ireland and the importance of apomorphy-based identifications". Proceedings of the Geologists' Association. 135 (3): 349–351. Bibcode:2024PrGA..135..349S. doi:10.1016/j.pgeola.2024.03.002.
  254. ^ Castanera, D.; Mampel, L.; Cobos, A. (2024). "The complexity of tracking stegosaurs and their gregarious behavior". Scientific Reports. 14 (1). 14833. Bibcode:2024NatSR..1414833C. doi:10.1038/s41598-024-64298-9. PMC 11222438. PMID 38961126.
  255. ^ Sánchez-Fenollosa, S.; Escaso, F.; Cobos, A. (2024). "A new specimen of Dacentrurus armatus Owen, 1875 (Ornithischia: Thyreophora) from the Upper Jurassic of Spain and its taxonomic relevance in the European stegosaurian diversity". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae074.
  256. ^ Lategano, F.; Conti, S.; Lozar, F. (2024). "Miragaia tail biomechanics and defences. Evaluation of the tail mobility and resistance to loadings and collisions". Rivista Italiana di Paleontologia e Stratigrafia. 130 (2): 475–486. doi:10.54103/2039-4942/21688.
  257. ^ Li, N.; Li, D.; Peng, G.; You, H. (2024). "The first stegosaurian dinosaur from Gansu Province, China". Cretaceous Research. 158. 105852. Bibcode:2024CrRes.15805852L. doi:10.1016/j.cretres.2024.105852. S2CID 267286799.
  258. ^ Cross, E.C; Arbour, V.M (2024). "An ankylosaur femur from the mid-Cretaceous of the Peace Region of northeastern British Columbia". Canadian Journal of Earth Sciences. 61 (6): 678–685. Bibcode:2024CaJES..61..678C. doi:10.1139/cjes-2023-0118. S2CID 267961368.
  259. ^ Soto Acuña, Sergio; Vargas, Alexander O.; Kaluza, Jonatan (2024). "A new look at the first dinosaur discovered in Antarctica: reappraisal of Antarctopelta oliveroi (Ankylosauria: Parankylosauria)". Advances in Polar Science. 35 (1): 78–107. doi:10.12429/j.advps.2023.0036.
  260. ^ Sanchez, S.; de Ricqlès, A.; Ponstein, J.; Tafforeau, P.; Zylberberg, L. (2024). "Microstructure and development of the dermal ossicles of Antarctopelta oliveroi (Dinosauria, Ankylosauria): A complex morphogenetic system deciphered through three-dimensional X-ray microtomography". Journal of Anatomy. doi:10.1111/joa.14159. PMID 39497679.
  261. ^ Ősi, A.; Barrett, P. M.; Nagy, A. L.; Szenti, I.; Vásárhelyi, L.; Magyar, J.; Segesdi, M.; Csiki-Sava, Z.; Botfalvai, G.; Jó, V. (2024). "Trophic evolution in ornithopod dinosaurs revealed by dental wear". Nature Communications. 15 (1). 7330. doi:10.1038/s41467-024-51697-9. PMC 11347701. PMID 39187477.
  262. ^ Alarcón-Muñoz, J.; Cruzado-Caballero, P.; Campos, O. V.; Bravo-Ortiz, C.; Vargas Bugueño, E.; Bajor, D.; Suárez, M. E.; Guevara, J. P.; Vargas, A. O.; Rubilar-Rogers, D. (2024). "Lower Cretaceous iguanodontian dinosaurs from the southwestern margin of Gondwana". Cretaceous Research. 165. 105983. doi:10.1016/j.cretres.2024.105983.
  263. ^ Santos-Cubedo, A. (2024). "The dinosaurs of the Maestrat Basin: Evolution of hadrosauriforms in the eastern Iberian Peninsula". Metode Science Studies Journal. 14: 57–63. doi:10.7203/metode.14.24534. hdl:10234/207308.
  264. ^ Escanero-Aguilar, D.; Torcida Fernández-Baldor, Fidel; Pereda-Suberbiola, Xabier; Huerta, Pedro (2024). "Skull material of an Early Cretaceous hadrosauriform dinosaur (Ornithopoda) from Salas de los Infantes (Burgos, Spain)". Journal of Iberian Geology. 50 (1): 67–82. Bibcode:2024JIbG...50...67E. doi:10.1007/s41513-023-00227-5.
  265. ^ Hayashi, S.; Nakajima, Y.; Tanaka, Y.; Breeden, B. T.; Kanazawa, Y.; Tsogtbaatar, C. (2024). "A Hadrosauroid Vertebra from the Upper Cretaceous Izumi Group, Kagawa Prefecture, Japan". Paleontological Research. 28 (4): 442–451. doi:10.2517/PR230027.
  266. ^ Nikolov, Vladimir; Dochev, Docho; Brusatte, Stephen L. (2024-01-01). "The ontogenetic status of a small hadrosauroid dinosaur from the uppermost Cretaceous of Bulgaria, and implications for the paleobiogeography and assembly of European island faunas". Cretaceous Research. 157. 105819. Bibcode:2024CrRes.15705819N. doi:10.1016/j.cretres.2023.105819. S2CID 266738171.
  267. ^ van der Linden, T. T. P.; Zelenitsky, D. K.; Fraaije, R. H. B.; Garcia, G.; Valentin, X.; Holwerda, F. M.; Schulp, A. S. (2024). "The first hadrosauroid eggshell from the Aix-en-Provence Basin (late Maastrichtian) of France". Historical Biology: An International Journal of Paleobiology: 1–8. doi:10.1080/08912963.2024.2380808.
  268. ^ Dudgeon, T. W.; Gallimore, G.; Evans, D. C. (2024). "Individual, ontogenetic, and phylogenetic variation in the dentition of hadrosaurids (Iguanodontia: Ornithischia)". Journal of Systematic Palaeontology. 22 (1). 2321620. Bibcode:2024JSPal..2219422D. doi:10.1080/14772019.2024.2419422.
  269. ^ Mark J. Powers; Matthew M. Rhodes; Aaron D. Dyer; Steven E. Mendonca; Ryan Wilkinson; Michael Naylor Hudgins; Matthew J. Pruden; Philip J. Currie; Gregory F. Funston (2024). "The first hadrosaurid trackway from the Horseshoe Canyon Formation (Campanian/Maastrichtian) of Alberta, Canada". Ichnos. 30 (3): 179–206. doi:10.1080/10420940.2024.2307069. S2CID 267489605.
  270. ^ Joubarne, T.; Therrien, F.; Zelenitsky, D. K. (2024). "Evidence of age segregation behavior in Hypacrosaurus stebingeri (Hadrosauridae: Lambeosaurinae) based on the taphonomic comparison of bonebeds from the Upper Cretaceous (upper Campanian) Oldman Formation of southernmost Alberta (Canada) and Two Medicine Formation of Montana (USA)". Palaeogeography, Palaeoclimatology, Palaeoecology. 653. 112416. Bibcode:2024PPP...65312416J. doi:10.1016/j.palaeo.2024.112416.
  271. ^ Warnock-Juteau, T. M.; Ryan, M. J.; Patterson, R. T.; Mallon, J. C. (2024). "Computed tomographic investigation of a hatchling skull reveals ontogenetic changes in the dentition and occlusal surface morphology of Hadrosauridae (Dinosauria: Ornithischia)". Vertebrate Anatomy Morphology Palaeontology. 11: 133–150. doi:10.18435/vamp29395.
  272. ^ Sharpe, H. S.; Powers, M. J.; Dyer, A. D.; Rhodes, M. M.; McIntosh, A. P.; Garros, C. W.; Currie, P. J.; Funston, G. F. (2024). "Craniomandibular anatomy of a juvenile specimen of Edmontosaurus regalis Lambe, 1917 clarifies issues in ontogeny and biogeography". Journal of Vertebrate Paleontology. 43 (5). e2326644. doi:10.1080/02724634.2024.2326644.
  273. ^ Wick, S. L.; Lehman, T. M. (2024). "A rare 'flat-headed' pachycephalosaur (Dinosauria: Pachycephalosauridae) from West Texas, USA, with morphometric and heterochronic considerations". Geobios. 86: 89–106. Bibcode:2024Geobi..86...89W. doi:10.1016/j.geobios.2024.08.006.
  274. ^ Hu, J.; Xu, X.; Zhao, Q.; He, Y.; Forster, C. A; Han, F. (2024). "Endocranial morphology of three early-diverging ceratopsians and implications for the behavior and the evolution of the endocast in ceratopsians". Paleobiology. 50 (3): 490–502. doi:10.1017/pab.2024.25.
  275. ^ Han, F.; Zhao, Q.; Hu, J.; Xu, X. (2024). "Bone histology and growth curve of the earliest ceratopsian Yinlong downsi from the Upper Jurassic of Junggar Basin, Northwest China". PeerJ. 12. e18761. doi:10.7717/peerj.18761.
  276. ^ Podlesnov, A. V.; Averianov, A. O.; Burukhin, A. A.; Feofanova, O. A.; Vladimirova, O. N. (2024). "New Data on Skull Morphology of Psittacosaurus sibiricus (Dinosauria: Ceratopsia) Using Micro-Computed Tomography". Paleontological Journal. 57 (10): 1128–1187. doi:10.1134/S0031030123100040. S2CID 267537898.
  277. ^ Sakagami, R.; Kawabe, S.; Hattori, S.; Zheng, W.; Jin, X. (2024). "Endocranial anatomy of the ceratopsian dinosaur Psittacosaurus lujiatunensis and its bearing on sensory and locomotor abilities" (PDF). Memoir of the Fukui Prefectural Dinosaur Museum. 22: 1–12.
  278. ^ Yang, Z.; Jiang, B.; Xu, J.; McNamara, M. E. (2024). "Cellular structure of dinosaur scales reveals retention of reptile-type skin during the evolutionary transition to feathers". Nature Communications. 15 (1). 4063. Bibcode:2024NatCo..15.4063Y. doi:10.1038/s41467-024-48400-3. PMC 11109146. PMID 38773066.
  279. ^ Witton, M. P.; Hing, R. A. (2024). "Did the horned dinosaur Protoceratops inspire the griffin?". Interdisciplinary Science Reviews. doi:10.1177/03080188241255 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  280. ^ Demers-Potvin, A. V.; Larsson, H. C. E. (2024). "Occurrence of Centrosaurus apertus (Ceratopsidae: Centrosaurinae) in Saskatchewan, Canada, and expanded dinosaur diversity in the easternmost exposure of the Late Cretaceous (Campanian) Dinosaur Park Formation". Canadian Journal of Earth Sciences. 61 (11): 1127–1155. Bibcode:2024CaJES..61.1127D. doi:10.1139/cjes-2023-0125.
  281. ^ Barrera Guevara, M. P.; Espinosa Chávez, B.; Serrano Brañas, C. I.; de León Dávila, C.; Posada Martinez, D.; Freedman Fowler, E.; Fowler, D. (2024). "Stratigraphic Reassessment of the Mexican Chasmosaurine Coahuilaceratops magnacuerna as the First Diagnostic Dinosaur Remains from the Cerro Huerta Formation (Lower Maastrichtian) Supporting the Southern Origin of the Triceratopsini". Diversity. 16 (7). 390. doi:10.3390/d16070390.
  282. ^ 1Pavia, Marco; Braga, José; Delfino, Massimo; Kgasi, Lazarus; Manegold, Albrecht; Steininger, Christine; Zipfel, Bernhard; Val, Aurore (2024-08-09). "A new species of Lovebird (Aves, Psittaculidae, Agapornis) from the Plio-Pleistocene of the Cradle of Humankind (Gauteng, South Africa)". Geobios (in press). doi:10.1016/j.geobios.2024.05.006.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  283. ^ Tennyson, A. J. D.; Salvador, R. B.; Tomotani, B. M.; Marx, F. G. (2024). "A New Diving Pliocene Ardenna Shearwater (Aves: Procellariidae) from New Zealand". Taxonomy. 4 (2): 237–249. doi:10.3390/taxonomy4020012. hdl:10037/33366.
  284. ^ a b Clark, A. D.; Atterholt, J.; Scannella, J. B.; Carroll, N.; O'Connor, J. K. (2024). "New enantiornithine diversity in the Hell Creek Formation and the functional morphology of the avisaurid tarsometatarsus". PLOS ONE. 19 (10). e0310686. Bibcode:2024PLoSO..1910686C. doi:10.1371/journal.pone.0310686. PMC 11463745. PMID 39383133.
  285. ^ a b c d e f g h i j k Zelenkov, N. V. (2024). "The Diversity and Evolution of Quails and Allies (Aves: Galliformes: Phasianidae: Coturnicini) in the Miocene–Early Pleistocene of Eurasia. Chapter 3. Systematics of Fossil Quails and Allies (Coturnicini)". Paleontological Journal. 58 (10): 1130–1185. doi:10.1134/S0031030124600896.
  286. ^ a b Lo Coco, G. E.; Agnolín, F. L.; Carrión, J. L. R. (2024). "New records of Pleistocene birds of prey from Ecuador". Journal of Ornithology. Bibcode:2024JOrni.tmp..116L. doi:10.1007/s10336-024-02229-1.{{cite journal}}: CS1 maint: bibcode (link)
  287. ^ Agnolín, F. L.; Álvarez Herrera, G. P.; Tomassini, R. (2024). "Pleistocene record of Chloephaga Eyton, 1838 (Anseriformes: Anatidae) in the Argentine Pampas, with the description of a new species". Comptes Rendus Palevol. 23 (18): 241–255. doi:10.5852/cr-palevol2024v23a18.
  288. ^ Zelenkov, N. V. (2024). "Gray Partridges (Phasianidae: Genera Perdix and Enkuria gen. nov.) from the Early Pleistocene of Crimea and Remarks on the Evolution of the Genus Perdix". Paleontological Journal. 58 (3): 335–352. Bibcode:2024PalJ...58..335Z. doi:10.1134/S0031030124700084.
  289. ^ a b c Mayr, G.; Kitchener, A.C. (2024). "New fossils of Eocypselus and Primapus from the British London Clay reveal a high taxonomic and ecological diversity of early Eocene swift-like apodiform birds". Ibis. 166 (advance online publication): 1199–1217. doi:10.1111/ibi.13323.
  290. ^ a b Mayr, Gerald; Kitchener, Andrew C. (2024-06-07). "The non-apodiform Strisores (potoos, nightjars and allied birds) from the early Eocene London Clay of Walton-on-the-Naze". Palaeobiodiversity and Palaeoenvironments. Bibcode:2024PdPe..tmp...21M. doi:10.1007/s12549-024-00610-9. ISSN 1867-1594.{{cite journal}}: CS1 maint: bibcode (link)
  291. ^ Wang, Xiaoli; Clark, Alexander D.; O'Connor, Jingmai K.; Zhang, Xiangyu; Wang, Xing; Zheng, Xiaoting; Zhou, Zhonghe (2024-02-27). "First Edentulous Enantiornithine (Aves: Ornithothoraces) from the Lower Cretaceous Jehol Avifauna". Cretaceous Research. 159 (in press): 105867. Bibcode:2024CrRes.15905867W. doi:10.1016/j.cretres.2024.105867. ISSN 0195-6671. S2CID 268103010.
  292. ^ a b c Zelenkov, Nikita (2024). "A remarkable diversity of waterfowl (Aves: Anseriformes) from the upper Eocene and lower Oligocene of Kazakhstan". Journal of Vertebrate Paleontology. 43 (6). e2374306. doi:10.1080/02724634.2024.2374306.
  293. ^ Bertelli, S.; Giannini, N. P.; García-López, D. A.; Deraco, V.; Babot, J.; Del Papa, C.; Armella, M. A.; Herrera, C.; Mayr, G. (2024). "The first Eocene bird from Northwestern Argentina". Publicación Electrónica de la Asociación Paleontológica Argentina. 24 (2): 78–89. doi:10.5710/PEAPA.31.05.2024.511.
  294. ^ a b c Mayr, G.; Kitchener, A. C. (2024). "Two distinctive, but difficult-to-classify, avian species and a new trogon (Trogoniformes) from the early Eocene London Clay". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 312 (3): 309–323. doi:10.1127/njgpa/2024/1216.
  295. ^ Zelenkov, N. V. (October 2024). "The Oldest Finds of the Genera Melanitta, Marmaronetta, and Other Ducks (Aves: Anatidae) from the Lower Pleistocene of the Crimea". Paleontological Journal. 58 (5): 593–603. Bibcode:2024PalJ...58..593Z. doi:10.1134/S0031030124600653. ISSN 0031-0301.
  296. ^ Volkova, N. V. (2024). "The Oldest Swallow (Aves: Passeriformes: Hirundinidae) from the Upper Lower Miocene of Southeastern Siberia". Doklady Biological Sciences. 518 (1): 261–265. doi:10.1134/S0012496624600258. PMID 39212885.
  297. ^ a b c Mayr, Gerald; Kitchener, Andrew C. (2024). "Messelornithids and messelornithid-like birds from the early Eocene London Clay of Walton-on-the-Naze (Essex, UK)". Geobios (in press). doi:10.1016/j.geobios.2023.12.011. ISSN 0016-6995.
  298. ^ Chiappe, Luis M.; Navalón, Guillermo; Martinelli, Agustín G.; Carvalho, Ismar de Souza; Miloni Santucci, Rodrigo; Wu, Yun-Hsin; Field, Daniel J. (2024-10-30). "Cretaceous bird from Brazil informs the evolution of the avian skull and brain". Nature. 635 (8038): 376–381. Bibcode:2024Natur.635..376C. doi:10.1038/s41586-024-08114-4. ISSN 1476-4687. PMC 11560842. PMID 39537887.
  299. ^ Musser, G.; Clarke, J. A. (2024). "A new Paleogene fossil and a new dataset for waterfowl (Aves: Anseriformes) clarify phylogeny, ecological evolution, and avian evolution at the K-Pg Boundary". PLOS ONE. 19 (7). e0278737. Bibcode:2024PLoSO..1978737M. doi:10.1371/journal.pone.0278737. PMC 11288464. PMID 39078833.
  300. ^ Ando, Tatsuro; Robinson, Jeffrey; Loch, Carolina; Nakahara, Tamon; Hayashi, Shoji; Richards, Marcus D.; Fordyce, Robert Ewan (2024-07-31). "A new tiny fossil penguin from the Late Oligocene of New Zealand and the morphofunctional transition of the penguin wing". Journal of the Royal Society of New Zealand. 54 (5): 660–681. Bibcode:2024JRSNZ..54..660A. doi:10.1080/03036758.2024.2362283. ISSN 0303-6758. PMC 11459834. PMID 39440294.
  301. ^ a b Zelenkov, N. V. (2024). "Grouse (Aves: Phasianidae: Tetraonini) from the Early Pleistocene of Crimea, and the Taxonomic Status of Lagopus atavus". Paleontological Journal. 58 (1): 112–123. Bibcode:2024PalJ...58..112Z. doi:10.1134/S0031030124010106.
  302. ^ a b Mayr, G.; Kitchener, A. C. (2024). "The galliform birds from the lower Eocene London Clay of Walton-on-the-Naze (Essex, U.K.): new species suggest faunal connections to Asia". Journal of Vertebrate Paleontology. 43 (6). e2374305. doi:10.1080/02724634.2024.2374305.
  303. ^ Horváth, I.; Futó, J.; Kessler, J. (2024). "Phalacrocorax bakonyiensis n. sp., a new species of cormorant from the Late Miocene of Hungary". Ornis Hungarica. 32 (1): 222–230. doi:10.2478/orhu-2024-0016.
  304. ^ a b c Mayr, G.; Kitchener, A. C. (2024). "The Picocoraciades (hoopoes, rollers, woodpeckers, and allies) from the early Eocene London Clay of Walton-on-the-Naze". PalZ. 98 (2): 291. Bibcode:2024PalZ...98..291M. doi:10.1007/s12542-024-00687-9.
  305. ^ Mayr, G.; Kitchener, A. C. (2024). "A new species of the Prophaethontidae (Aves, Phaethontiformes) from the early Eocene London Clay". Historical Biology: An International Journal of Paleobiology: 1–8. doi:10.1080/08912963.2024.2418895.
  306. ^ Rando, J. C.; Pieper, H.; Pereira, F.; Torres-Roig, E.; Alcover, J. A. (2024). "Petrel extinction in Macaronesia (North-East Atlantic Ocean): the case of the genus Pterodroma (Aves: Procellariiformes: Procellariidae)". Zoological Journal of the Linnean Society. 202 (2). zlae123. doi:10.1093/zoolinnean/zlae123.
  307. ^ Wang, Xuri; Cau, Andrea; Wang, Yinuo; Kundrát, Martin; Zhang, Guili; Liu, Yichuan; Chiappe, Luis M. (2024-09-24). "A new gansuid bird (Avialae, Euornithes) from the Lower Cretaceous (Aptian) Jiufotang Formation of Jianchang, western Liaoning, China". Cretaceous Research. 166: 106014. doi:10.1016/j.cretres.2024.106014. ISSN 0195-6671.
  308. ^ Gorbatcheva, V. O.; Zelenkov, N. V. (2024). "A Vulture of the Genus Torgos (Aves: Accipitridae) in the Late Pleistocene of Azerbaijan". Paleontological Journal. 58 (4): 475–482. Bibcode:2024PalJ...58..475G. doi:10.1134/S0031030124600367.
  309. ^ De Mendoza, Ricardo Santiago; Degrange, Federico Javier; Tambussi, Claudia Patricia (2024). "An assessment of the anseriform affinities of "Telmabates" howardae". Journal of South American Earth Sciences. 135. 104786. Bibcode:2024JSAES.13504786D. doi:10.1016/j.jsames.2024.104786. S2CID 267159455.
  310. ^ Mayr, Gerald; Kitchener, Andrew C. (2024-12-12). "A new mousebird (Aves, Coliiformes) from the early Eocene London Clay of Walton-on-the-Naze (Essex, United Kingdom) constitutes a morphological link between sandcoleids and coliids". Geodiversitas. 46 (20): 979–993. doi:10.5252/geodiversitas2024v46a20.
  311. ^ Balanoff, Amy; Ferrer, Elizabeth; Saleh, Lemise; Gignac, Paul M.; Gold, M. Eugenia L.; Marugán-Lobón, Jesús; Norell, Mark; Ouellette, David; Salerno, Michael; Watanabe, Akinobu; Wei, Shouyi; Bever, Gabriel; Vaska, Paul (2024). "Quantitative functional imaging of the pigeon brain: implications for the evolution of avian powered flight". Proceedings of the Royal Society B: Biological Sciences. 291 (2015). doi:10.1098/rspb.2023.2172. PMC 10827418. PMID 38290541.
  312. ^ Zhou, Zhonghe; Wang, Min (2024). "Cretaceous fossil birds from China". Geological Society, London, Special Publications. 544 (1). doi:10.1144/SP544-2023-129. S2CID 267184802.
  313. ^ Wang, X.; O'Connor, J.; Zheng, X.; Wang, Y.; Kiat, Y. (2024). "Earliest evidence of avian primary feather moult". Biology Letters. 20 (7). 20240106. doi:10.1098/rsbl.2024.0106. PMC 11285806. PMID 38955226.
  314. ^ Zhou, Y.; Pan, Y.; Wang, M.; Wang, X.; Zheng, X.; Zhou, Z. (2024). "Fossil evidence sheds light on sexual selection during the early evolution of birds". Proceedings of the National Academy of Sciences of the United States of America. 121 (3). e2309825120. Bibcode:2024PNAS..12109825Z. doi:10.1073/pnas.2309825120. PMC 10801838. PMID 38190528. S2CID 266871669.
  315. ^ Field, Daniel J.; Benito, Juan; Werning, Sarah; Chen, Albert; Kuo, Pei-Chen; Crane, Abi; Widrig, Klara E.; Ksepka, Daniel T.; Jagt, John W.M. (2024). "Remarkable insights into modern bird origins from the Maastrichtian type area (north-east Belgium, south-east Netherlands)". Netherlands Journal of Geosciences. 103. Bibcode:2024NJGeo.103E..15F. doi:10.1017/njg.2024.11.
  316. ^ Stoicescu, V.; Codrea, V. A.; Bordeianu, M.; Solomon, A. A. (2024). "Elopteryx at Nălaț-Vad: new theropod material described from the Hațeg Basin (Romania)". North-Western Journal of Zoology. 20 (1): 73–80.
  317. ^ Liu, B.-Y.; Stidham, T. A.; Wang, X.-P.; Li, Z.-H.; Zhou, Z.-H. (2024). "Morphometric analysis of the cervical vertebral series in extant birds with implications for Mesozoic avialan feeding ecology". Vertebrata PalAsiatica. 62 (2): 99–119. doi:10.19615/j.cnki.2096-9899.240305.
  318. ^ O'Connor, J. K.; Atterholt, J.; Bailleul, A. M.; Wang, M.; Kuo, P.-C.; Zhou, Z. (2024). "Description and osteohistology of two early immature enantiornithines (Aves: Ornithothoraces) from the Early Cretaceous Jehol Biota". Geobios. doi:10.1016/j.geobios.2024.05.004.
  319. ^ O'Connor, J.; Clark, A.; Herrera, F.; Yang, X.; Wang, X.; Zheng, X.; Hu, H.; Zhou, Z. (2024). "Direct evidence of frugivory in the Mesozoic bird Longipteryx contradicts morphological proxies for diet". Current Biology. 34 (19): 4559–4566.e1. Bibcode:2024CBio...34.4559O. doi:10.1016/j.cub.2024.08.012. PMID 39260360.
  320. ^ Miller, Case Vincent; Bright, Jen A; Wang, Xiaoli; Zheng, Xiaoting; Pittman, Michael (2024). "Synthetic analysis of trophic diversity and evolution in Enantiornithes with new insights from Bohaiornithidae". eLife. 12. RP89871. doi:10.7554/eLife.89871.3. PMC 11060716. PMID 38687200.
  321. ^ Kundrát, M.; Horváth, D.; Wang, Z.; Wang, X. (2024). "Developmental distribution of osteocyte lacunae in the limb bone cortex of Musivavis amabilis with a review of bone microstructure adaptations in Enantiornithes". Cretaceous Research. 158. 105839. Bibcode:2024CrRes.15805839K. doi:10.1016/j.cretres.2024.105839. S2CID 267250890.
  322. ^ Acosta Hospitaleche, Carolina; Irazoqui, Facundo; Bona, Paula; Paulina-Carabajal, Ariana (2024). "Review of the Cretaceous avian diversity of Antarctica: a changing scenario for the evolution of early Neornithine birds". Advances in Polar Science. 35 (1): 1–13. doi:10.12429/j.advps.2023.0025.
  323. ^ Álvarez-Herrera, G. P.; Agnolín, F. L. (2024). "Mesozoic birds from southern Patagonia shed light on the early Antarctic avifauna". Ameghiniana. doi:10.5710/AMGH.29.07.2024.3605.
  324. ^ Brocklehurst, N.; Field, D. J. (2024). "Tip dating and Bayes factors provide insight into the divergences of crown bird clades across the end-Cretaceous mass extinction". Proceedings of the Royal Society B: Biological Sciences. 291 (2016). 20232618. doi:10.1098/rspb.2023.2618. PMC 10865003. PMID 38351798.
  325. ^ Berv, J. S.; Singhal, S.; Field, D. J.; Walker-Hale, N.; McHugh, S. W.; Shipley, J. R.; Miller, E. T.; Kimball, R. T.; Braun, E. L.; Dornburg, A.; Parins-Fukuchi, C. T.; Prum, R. O.; Winger, B. M.; Friedman, M.; Smith, S. A. (2024). "Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction". Science Advances. 10 (31): eadp0114. Bibcode:2024SciA...10P.114B. doi:10.1126/sciadv.adp0114. PMC 11290531. PMID 39083615.
  326. ^ Widrig, K. E.; Navalón, G.; Field, D. J. (2024). "Paleoneurology of stem palaeognaths clarifies the plesiomorphic condition of the crown bird central nervous system". Journal of Morphology. 285 (6). e21710. doi:10.1002/jmor.21710. PMID 38760949.
  327. ^ Wu, Qian; Pan, Yan-Hong; Li, Zhi-Heng; Zhou, Zhong-He; Bailleul, Alida M. (2024). "First histochemical examination of a Miocene ostrich eggshell with the oldest mineral-bound peptides". Vertebrata PalAsiatica. 62 (2): 120–134. doi:10.19615/j.cnki.2096-9899.240329.
  328. ^ Pickford, M.; Russell, D.; Day, M. O. (2024). "Nomination of a lectotype for the avian oospecies Psammornis rothschildi Andrews, 1912". Fossil Imprint. 80 (2): 390–400. doi:10.37520/fi.2024.028.
  329. ^ Schroeter, E (2024). "Characterization of Diagenetiforms in an Expanded Proteome of the Extinct Moa (Dinornithidae): Identifying Biological, Diagenetic, Experimental Artifact, and Mislabeled Modifications in Degraded Tissues". Minerals. 14 (2): 137. Bibcode:2024Mine...14..137S. doi:10.3390/min14020137.
  330. ^ Hunt, A. P.; Lucas, S. G. (2024). "An overview of the ichnology of moa tracks and other traces from the late Cenozoic of New Zealand". New Mexico Museum of Natural History and Science Bulletin. 95: 179–197.
  331. ^ Pickford, M. (2024). "Taxonomic revision of the extinct avian oospecies Diamantornis karingarabensis (Senut et al., 1998) from the Latest Miocene of Namibia" (PDF). Communications of the Geological Survey of Namibia. 27: 66–71.
  332. ^ Edwards, Scott V.; Cloutier, Alison; Cockburn, Glenn; Driver, Robert; Grayson, Phil; Katoh, Kazutaka; Baldwin, Maude W.; Sackton, Timothy B.; Baker, Allan J. (2024). "A nuclear genome assembly of an extinct flightless bird, the little bush moa". Science Advances. 10 (21): eadj6823. Bibcode:2024SciA...10J6823E. doi:10.1126/sciadv.adj6823. PMID 38781323.
  333. ^ Tomlinson, S.; Lomolino, M. V.; Wood, J. R.; Anderson, A.; Brown, S. C.; Haythorne, S.; Perry, G. L. W.; Wilmshurst, J. M.; Austin, J. J.; Fordham, D. A. (2024). "Ecological dynamics of moa extinctions reveal convergent refugia that today harbour flightless birds". Nature Ecology & Evolution. 8 (8): 1472–1481. Bibcode:2024NatEE...8.1472T. doi:10.1038/s41559-024-02449-x. PMID 39048729.
  334. ^ Brownstein, C. D. (2024). "A juvenile bird with possible crown-group affinities from a dinosaur-rich Cretaceous ecosystem in North America". BMC Ecology and Evolution. 24 (1). 20. Bibcode:2024BMCEE..24...20B. doi:10.1186/s12862-024-02210-9. PMC 10858573. PMID 38336630.
  335. ^ Crane, A.; Benito, J.; Chen, A.; Musser, G.; Torres, C. R.; Clarke, J. A.; Lautenschlager, S.; Ksepka, D. T.; Field, D. J. (2024). "Taphonomic damage obfuscates interpretation of the retroarticular region of the Asteriornis mandible". Geobios. doi:10.1016/j.geobios.2024.03.003.
  336. ^ Mayr, G.; Mourer-Chauviré, C.; Bourdon, E.; Stache, M. (2024). "Resurrecting the taxon Diatryma: A review of the giant flightless Eocene Gastornithiformes (Aves), with a report of the first skull of Diatryma geiselensis". Palaeontologia Electronica. 27 (3). 27.3.a57. doi:10.26879/1438.
  337. ^ McInerney, P. L.; Blokland, J. C.; Worthy, T. H. (2024). "Skull morphology of the enigmatic Genyornis newtoni Stirling and Zeitz, 1896 (Aves, Dromornithidae), with implications for functional morphology, ecology, and evolution in the context of Galloanserae". Historical Biology: An International Journal of Paleobiology. 36 (6): 1093–1165. Bibcode:2024HBio...36.1093M. doi:10.1080/08912963.2024.2308212.
  338. ^ Matsuoka, H.; Seoka, R.; Hasegawa, Y. (2024). "Reexamination of the prepelvic vertebrae found in the holotype of Annakacygna hajimei (Aves, Anseriformes, Cygnini) revealed the adaptive morphology of vertebral column linked to the mode of life of the "ultimate bird"" (PDF). Bulletin of Gunma Museum of Natural History. 28: 15–44.
  339. ^ Tennyson, Alan J. D.; Greer, Liam; Lubbe, Pascale; Marx, Felix G.; Giovanardi, Simone; Rawlence, Nicolas J. (2024). "A response to Worthy et al. 2022. A swan-sized fossil anatid (Aves: Anatidae) from the early Miocene St Bathans Fauna of New Zealand. Zootaxa, 5168 (1), 39–50". Zootaxa. 5453 (1): 127–128. doi:10.11646/zootaxa.5453.1.8. PMID 39646991.
  340. ^ Worthy, Trevor H.; Scofield, R. Paul; Hand, Suzanne J.; De Pietri, Vanesa L.; Archer, Michael (2022). "A swan-sized fossil anatid (Aves: Anatidae) from the early Miocene St Bathans Fauna of New Zealand". Zootaxa. 5168 (1): 39–50. doi:10.11646/zootaxa.5168.1.3. PMID 36101302.
  341. ^ Rawlence, N. J.; Verry, A. J. F.; Cole, T. L.; Shepherd, L. D.; Tennyson, A. J. D.; Williams, M.; Wood, J. R.; Mitchell, K. J. (2024). "Ancient mitogenomes reveal evidence for the Late Miocene dispersal of mergansers to the Southern Hemisphere". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae040.
  342. ^ Wu, S.; Rheindt, F. E.; Zhang, J.; Wang, J.; Zhang, L.; Quan, C.; Li, Z.; Wang, M.; Wu, F.; Qu, Y.; Edwards, S. V.; Zhou, Z.; Liu, L. (2024). "Genomes, fossils, and the concurrent rise of modern birds and flowering plants in the Late Cretaceous". Proceedings of the National Academy of Sciences of the United States of America. 121 (8). e2319696121. Bibcode:2024PNAS..12119696W. doi:10.1073/pnas.2319696121. PMC 10895254. PMID 38346181.
  343. ^ Claramunt, S.; Braun, E. L.; Cracraft, J.; Fjeldså, J.; Ho, S. Y. W.; Houde, P.; Nguyen, J. M. T.; Stiller, J. (2024). "Calibrating the genomic clock of modern birds using fossils". Proceedings of the National Academy of Sciences of the United States of America. 121 (39). e2405887121. Bibcode:2024PNAS..12105887C. doi:10.1073/pnas.2405887121. PMC 11441564. PMID 39284060.
  344. ^ Wu, S.; Rheindt, F. E.; Zhang, J.; Wang, J.; Zhang, L.; Quan, C.; Li, Z.; Wang, M.; Wu, F.; Qu, Y.; Edwards, S. V.; Zhou, Z.; Liu, L. (2024). "Reply to Claramunt et al.: Robustness of the Cretaceous radiation of crown aves". Proceedings of the National Academy of Sciences of the United States of America. 121 (39). e2412448121. Bibcode:2024PNAS..12112448W. doi:10.1073/pnas.2412448121. PMC 11441489. PMID 39284071.
  345. ^ Galicia-Coleote, O.; Cruz, J. A.; Corona-M, E. (2024). "A new approach to the fossil flamingo from Pie de Vaca locality (Puebla, Central México) and some taxonomic and biogeographic implications". Geobios. doi:10.1016/j.geobios.2024.05.007.
  346. ^ Young, M. T.; Hume, J. P.; Day, M. O.; Douglas, R. P.; Simmons, Z. M.; White, J.; Heller, M. O.; Gostling, N. J. (2024). "The systematics and nomenclature of the Dodo and the Solitaire (Aves: Columbidae), and an overview of columbid family-group nomina". Zoological Journal of the Linnean Society. 201 (4). zlae086. doi:10.1093/zoolinnean/zlae086.
  347. ^ Zelenkov, N. V. (2024). "Unexpected Find of a Buttonquail (Aves: Charadriiformes: Turnicidae) in the Lower Pleistocene of Crimea". Doklady Biological Sciences. 513 (1 supplement): S1 – S4. doi:10.1134/S0012496623600148. PMID 38190042. S2CID 266843308.
  348. ^ Goodman, S. M.; Rasolonjatovo, H. A. M. (2024). "Description of the wing spur in the subfossil Malagasy lapwing, Vanellus madagascariensis (Aves: Charadriiformes, Charadriidae): Insights into some of its possible life history traits and why it is extinct". Geobios. 85: 19–24. Bibcode:2024Geobi..85...19G. doi:10.1016/j.geobios.2024.02.002.
  349. ^ Abbassi, N.; Tinooni, M. S.; Ghorbani Dehnavi, M.; Shakeri, S.; Eshaghi, A. (2024). "Oligocene vertebrate footprints from the Lower Red Formation, Central Iran". Fossil Record. 27 (2): 265–287. Bibcode:2024FossR..27..265A. doi:10.3897/fr.27.133914.
  350. ^ Mayr, G.; Kitchener, A. C. (2024). "A large frigatebird-like tarsometatarsus from the London Clay of Walton-on-the-Naze may shed light on the affinities of a poorly known early Eocene seabird taxon". Acta Palaeontologica Polonica. 69 (3): 523–528. doi:10.4202/app.01169.2024.
  351. ^ Guilherme, E.; Mendes, I. D.; D'Apolito, C.; Souza, L. G.; Negri, F. R.; Magalhães, K. G.; Souza-Filho, J. P. (2024). "The tibiotarsus of a giant darter from the upper Miocene of Amazonia and weight estimates for fossil darters". Palaeoworld. doi:10.1016/j.palwor.2024.10.003.
  352. ^ Zelenkov, N. V.; Maslintsyna, M. P.; Malyshkina, T. P.; Maslennikov, A. A.; Syromyatnikova, E. V.; Gimranov, D. O. (2024). "A Large Marine Bird (Aves: Procellariiformes) from the Eocene of Western Siberia". Doklady Biological Sciences. 518 (1): 230–233. doi:10.1134/S0012496624600131. PMID 39128959.
  353. ^ Jadwiszczak, P.; Krüger, A.; Mörs, T. (2024). "Fossil and modern penguin tarsometatarsi: cavities, vascularity, and resilience". Integrative Zoology. doi:10.1111/1749-4877.12852. PMID 38858828.
  354. ^ Xia, Bo-Yang; Pei, Jun-Ling; Li, Quan-Guo (2024). "A new penguin fossil from Seymour Island and reassessment of taxonomy and diversity of Eocene Antarctic penguins". Palaeoworld. 33 (6): 1668–1680. Bibcode:2024Palae..33.1668X. doi:10.1016/j.palwor.2024.04.007.
  355. ^ Cerda, I. A.; Tambussi, C. P.; Degrange, F. J. (2014). "Unexpected microanatomical variation among Eocene Antarctic stem penguins (Aves: Sphenisciformes)". Historical Biology: An International Journal of Paleobiology. 27 (5): 549–557. doi:10.1080/08912963.2014.896907. hdl:11336/41915.
  356. ^ Ksepka, D. T.; Werning, S.; Sclafani, M.; Boles, Z. M. (2015). "Bone histology in extant and fossil penguins (Aves: Sphenisciformes)". Journal of Anatomy. 227 (5): 611–630. doi:10.1111/joa.12367. PMC 4609197. PMID 26360700.
  357. ^ Canoville, A.; Robin, J.-P.; de Buffrénil, V. (2024). "Ontogenetic development of limb bone microstructure in the king penguin, Aptenodytes patagonicus (Miller, 1778), with considerations for palaeoecological inferences in Sphenisciformes". Zoological Journal of the Linnean Society. doi:10.1093/zoolinnean/zlae002.
  358. ^ McComish, Bennet J; Charleston, Michael A; Parks, Matthew; Baroni, Carlo; Salvatore, Maria Cristina; Li, Ruiqiang; Zhang, Guojie; Millar, Craig D; Holland, Barbara R; Lambert, David M (2024). "Ancient and Modern Genomes Reveal Microsatellites Maintain a Dynamic Equilibrium Through Deep Time". Genome Biology and Evolution. 16 (3): evae017. doi:10.1093/gbe/evae017. PMC 10972684. PMID 38412309.
  359. ^ Torres Etchegorry, M.; Degrange, F. J. (2024). "Insights into Argentavis magnificens (Aves, Teratornithidae) lifestyle based on neuroanatomy". Journal of Anatomy. doi:10.1111/joa.14184. PMID 39626195.
  360. ^ Leoni, R; Alves-Silva, L; da Costa, J; de Araujo-Junior, H; Dantas, M (2024). "First fossil record of a Turkey vulture (Cathartes aura) in northeast of Brazil: Taxonomy, ichnology, and taphonomic history". South American Earth Sciences. 136. Bibcode:2024JSAES.13604831L. doi:10.1016/j.jsames.2024.104831. S2CID 267602385.
  361. ^ Emslie, S. D. (2024). "A late Pleistocene nest cave of Gymnogyps californianus (California Condor) in Texas: New radiocarbon and stable isotope analyses". Ornithology. 141 (4). doi:10.1093/ornithology/ukae032.
  362. ^ Moleón, Marcos; Graciá, Eva; García, Nuria; Gil-Sánchez, José M.; Godinho, Raquel; Beja, Pedro; Palma, Luís; Real, Joan; Hernández-Matías, Antonio; Muñoz, A. Román; Arrondo, Eneko; Sánchez-Zapata, José A. (2024). "Wildlife following people: A multidisciplinary assessment of the ancient colonization of the Mediterranean Basin by a long-lived raptor". People and Nature. 6 (3): 1303–1319. Bibcode:2024PeoNa...6.1303M. doi:10.1002/pan3.10642.
  363. ^ Acosta Hospitaleche, C.; Jones, W. (2024). "Were terror birds the apex continental predators of Antarctica? New findings in the early Eocene of Seymour Island". Palaeontologia Electronica. 27 (1). 27.1.a13. doi:10.26879/1340.
  364. ^ LaBarge, T. W.; Gardner, J. D.; Organ, C. L. (2024). "The evolution and ecology of gigantism in terror birds (Aves, Phorusrhacidae)". Proceedings of the Royal Society B: Biological Sciences. 291 (2021). 20240235. doi:10.1098/rspb.2024.0235. PMC 11040249. PMID 38654650.
  365. ^ Acosta Hospitaleche, C.; Jones, W. (2024). "Insights on the oldest terror bird (Aves, Phorusrhacidae) from the Eocene of Argentina". Historical Biology: An International Journal of Paleobiology: 1–9. doi:10.1080/08912963.2024.2304592. S2CID 267475903.
  366. ^ Degrange, F. J.; Cooke, S. B.; Ortiz-Pabon, L. G.; Pelegrin, J. S.; Perdomo, C. A.; Salas-Gismondi, R.; Link, A. (2024). "A gigantic new terror bird (Cariamiformes, Phorusrhacidae) from Middle Miocene tropical environments of La Venta in northern South America". Papers in Palaeontology. 10 (6). e1601. Bibcode:2024PPal...10E1601D. doi:10.1002/spp2.1601.
  367. ^ Zelenkov, N. V. (2024). "Cuban Macaw Ara tricolor in the Upper Pleistocene of Western Cuba". Doklady Biological Sciences. 516 (1): 32–35. doi:10.1134/S0012496624700947. PMID 38538825.
  368. ^ Riamon, S.; Tourment, N.; Louchart, A. (2020). "The earliest Tyrannida (Aves, Passeriformes), from the Oligocene of France". Scientific Reports. 10 (1). 9776. Bibcode:2020NatSR..10.9776R. doi:10.1038/s41598-020-66149-9. PMC 7299954. PMID 32555197.
  369. ^ Lowi-Merri, T. M.; Gjevori, M.; Bocheński, Z. M.; Wertz, K.; Claramunt, S. (2024). "Total-evidence dating and the phylogenetic affinities of early fossil passerines". Journal of Systematic Palaeontology. 22 (1). 2356086. Bibcode:2024JSPal..2256086L. doi:10.1080/14772019.2024.2356086.
  370. ^ De Pietri, V. L.; Scofield, R. P.; Hand, S. J.; Archer, M.; Worthy, T. H. (2024). "A preliminary assessment of the diversity of songbirds (Aves, Passeriformes) from the Miocene St. Bathans Fauna, New Zealand". Journal of Vertebrate Paleontology. 44 (1). e2400252. Bibcode:2024JVPal..44E0252D. doi:10.1080/02724634.2024.2400252.
  371. ^ Pöllath, N.; Peters, J. (2024). "Early Neolithic avifaunal remains from southeast Anatolia provide insight into Early Holocene species distributions and long-term shifts in their range". Ibis. 166 (4): 1264–1279. doi:10.1111/ibi.13341.
  372. ^ Matthews, T. J.; Triantis, K. A.; Wayman, J. P.; Martin, T. E.; Hume, J. P.; Cardoso, P.; Faurby, S.; Mendenhall, C. D.; Dufour, P.; Rigal, F.; Cooke, R.; Whittaker, R. J.; Pigot, A. L.; Thébaud, C.; Wagner Jørgensen, M.; Benavides, E.; Soares, F. C.; Ulrich, W.; Kubota, Y.; Sadler, J. P.; Tobias, J. A.; Sayol, F. (2024). "The global loss of avian functional and phylogenetic diversity from anthropogenic extinctions". Science. 386 (6717): 55–60. Bibcode:2024Sci...386...55M. doi:10.1126/science.adk7898. PMID 39361743.
  373. ^ Jacobs, M. L.; Smith, R. E.; Zouhri, S. (2024). "A new ornithocheirid pterosaur (Pterosauria: Ornithocheiridae) from the mid-Cretaceous Ifezouane Formation, Kem Kem Group of Morocco". Cretaceous Research. 166. 106015. doi:10.1016/j.cretres.2024.106015.
  374. ^ Martin-Silverstone, Elizabeth; Unwin, David M.; Cuff, Andrew R.; Brown, Emily E.; Allington-Jones, Lu; Barrett, Paul M. (2024-02-05). "A new pterosaur from the Middle Jurassic of Skye, Scotland and the early diversification of flying reptiles". Journal of Vertebrate Paleontology. 43 (4). doi:10.1080/02724634.2023.2298741. ISSN 0272-4634.
  375. ^ Pentland, A. H.; Poropat, S. F.; Duncan, R. J.; Kellner, A. W. A.; Bantim, R. A. M.; Bevitt, J. J.; Tait, A. M.; Grice, K. (2024). "Haliskia peterseni, a new anhanguerian pterosaur from the late Early Cretaceous of Australia". Scientific Reports. 14 (1). 11789. Bibcode:2024NatSR..1411789P. doi:10.1038/s41598-024-60889-8. PMC 11169243. PMID 38866826.
  376. ^ Rosenbach, K. L.; Goodvin, D. M.; Albshysh, M. G.; Azzam, H. A.; Smadi, A. A.; Mustafa, H. A.; Zalmout, I. S. A.; Wilson Mantilla, J. A. (2024). "New pterosaur remains from the Late Cretaceous of Afro-Arabia provide insight into flight capacity of large pterosaurs". Journal of Vertebrate Paleontology. 44 (1). e2385068. Bibcode:2024JVPal..44E5068R. doi:10.1080/02724634.2024.2385068.
  377. ^ Fernandes, Alexandra E.; Pol, Diego; Rauhut, Oliver W. M. (2024-12-11). "The oldest monofenestratan pterosaur from the Queso Rallado locality (Cañadón Asfalto Formation, Toarcian) of Chubut Province, Patagonia, Argentina". Royal Society Open Science. 11 (12). doi:10.1098/rsos.241238. ISSN 2054-5703. PMC 11631458. PMID 39665092.
  378. ^ Zhou, X.; Ikegami, N.; Pêgas, R. V.; Yoshinaga, T.; Sato, T.; Mukunoki, T.; Otani, J.; Kobayashi, Y. (2024). "Reassessment of an azhdarchid pterosaur specimen from the Mifune Group, Upper Cretaceous of Japan". Cretaceous Research. 167. 106046. doi:10.1016/j.cretres.2024.106046.
  379. ^ Spindler, Frederik (2024-07-23). "A pterosaurian connecting link from the Late Jurassic of Germany". Palaeontologia Electronica. 27 (2): 1–27. doi:10.26879/1366. ISSN 1094-8074.
  380. ^ Hone, David William Elliott; Fitch, Adam; Selzer, Stefan; Lauer, René; Lauer, Bruce (2024-11-18). "A new and large monofenestratan reveals the evolutionary transition to the pterodactyloid pterosaurs". Current Biology. 34 (23): 5607–5614.e3. Bibcode:2024CBio...34.5607H. doi:10.1016/j.cub.2024.10.023. ISSN 0960-9822. PMID 39561774.
  381. ^ Pêgas, Rodrigo V. (2024-06-10). "A taxonomic note on the tapejarid pterosaurs from the Pterosaur Graveyard site (Caiuá Group, ?Early Cretaceous of Southern Brazil): evidence for the presence of two species". Historical Biology: 1–22. doi:10.1080/08912963.2024.2355664. ISSN 0891-2963.
  382. ^ Smyth, R. S. H.; Breithaupt, B. H.; Butler, R. J.; Falkingham, P. L.; Unwin, D. M. (2024). "Hand and foot morphology maps invasion of terrestrial environments by pterosaurs in the mid-Mesozoic". Current Biology. 34 (21): 4894–4907.e3. Bibcode:2024CBio...34.4894S. doi:10.1016/j.cub.2024.09.014. PMID 39368469.
  383. ^ Buchmann, R.; Rodrigues, T. (2024). "Arthrological reconstructions of the pterosaur neck and their implications for the cervical position at rest". PeerJ. 12. e16884. doi:10.7717/peerj.16884. PMC 10893864. PMID 38406270.
  384. ^ Chen, H.; Jiang, S.; Kellner, A. W. A.; Wang, X. (2024). "New insights into pterosaur cranial anatomy: X-ray imaging reveals palatal structure and evolutionary trends". Communications Biology. 7 (1). 456. doi:10.1038/s42003-024-06132-6. PMC 11014945. PMID 38609453.
  385. ^ Henderson, D. M. (2024). "Using your head — cranial steering in pterosaurs". The Science of Nature. 111 (3). 29. Bibcode:2024SciNa.111...29H. doi:10.1007/s00114-024-01915-7. PMID 38713269.
  386. ^ Schade, M.; Ansorge, J. (2024). "Enigmatic fragment possibly marks the first pterosaur record from the Lower Toarcian of Grimmen, NE Germany". PalZ. doi:10.1007/s12542-024-00698-6.
  387. ^ Yun, Chan-Gyu (2024). "Geometric morphometric approach to establish phylogenetic affinities of enigmatic pterosaur specimens from the Lower Cretaceous of South Korea". Acta Palaeontologica Romaniae. 20 (1): 77–86. doi:10.35463/j.apr.2024.01.06.
  388. ^ Cooper, S. L. A.; Smith, R. E.; Martill, D. M. (2024). "Dietary tendencies of the Early Jurassic pterosaurs Campylognathoides Strand, 1928, and Dorygnathus Wagner, 1860, with additional evidence for teuthophagy in Pterosauria". Journal of Vertebrate Paleontology. 44 (2). e2403577. doi:10.1080/02724634.2024.2403577.
  389. ^ Habib, M. B.; Hone, D. W. E. (2024). "Intraspecific variation in the pterosaur Rhamphorhynchus muensteri—implications for flight and socio-sexual signaling". PeerJ. 12. e17524. doi:10.7717/peerj.17524. PMC 11260407. PMID 39035160.
  390. ^ Jagielska, N.; Kaye, T. G.; Habib, M. B.; Hirasawa, T.; Pittman, M. (2024). "New soft tissue data of pterosaur tail vane reveals sophisticated, dynamic tensioning usage and expands its evolutionary origins". eLife. 13. RP100673. doi:10.7554/eLife.100673. PMC 11655060. PMID 39693234.
  391. ^ So, K. S.; Kim, P. H.; Won, C. G. (2024). "First Articulated Rhamphorhynchoid Pterosaur from the Early Cretaceous of the Democratic People's Republic of Korea". Paleontological Journal. 57 (1 supplement): S90 – S94. doi:10.1134/S003103012360018X.
  392. ^ Withers, D.; Martill, D. M.; Smith, R. E.; Ashton, M.; Chinsamy, A.; Wood, C.; Forrest, R. (2024). "A large pterosaur from the Middle Jurassic (lower Bajocian) of Rutland, United Kingdom". Proceedings of the Geologists' Association. 135 (6): 660–675. doi:10.1016/j.pgeola.2024.09.003.
  393. ^ Heredia, A. M.; Díaz-Martínez, I.; Pazos, P. J.; de Valais, S. (2024). "Pterosaur tracks from the Upper Cretaceous (Cenomanian) Candeleros Formation of northwestern Patagonia, Argentina: Ichnotaxonomic and palaeoecological perspectives from Gondwana". Palaeogeography, Palaeoclimatology, Palaeoecology. 650. 112338. Bibcode:2024PPP...65012338H. doi:10.1016/j.palaeo.2024.112338.
  394. ^ Smyth, R. S. H.; Unwin, D. M. (2024). "Re-evaluation of Pterodactylus antiquus and Diopecephalus kochi: two troublesome taxonomic concepts". Journal of Systematic Palaeontology. 22 (1). 2421845. doi:10.1080/14772019.2024.2421845.
  395. ^ Etienne, J. L.; Smith, R. E.; Unwin, D. M.; Smyth, R. S. H.; Martill, D. M. (2024). "A 'giant' pterodactyloid pterosaur from the British Jurassic". Proceedings of the Geologists' Association. 135 (3): 335–348. Bibcode:2024PrGA..135..335E. doi:10.1016/j.pgeola.2024.05.002.
  396. ^ Burlot, R.; Codorniú, L.; Defend, L.; Laurin, M. (2024). "The ankle joint of Pterodaustro guinazui". Acta Palaeontologica Polonica. 69 (2): 329–350. doi:10.4202/app.01097.2023. hdl:11336/240037.
  397. ^ Xu, Y.; Jiang, S.; Wang, X. (2024). "The restudy of Haopterus gracilis from the Yixian Formation, Liaoning, China". Cretaceous Research. 162. 105933. Bibcode:2024CrRes.16205933X. doi:10.1016/j.cretres.2024.105933.
  398. ^ Hone, D. W. E.; Jiang, S.; Fitch, A. J.; Xu, Y.; Xu, X. (2024). "A reassessment on Luchibang xingzhe: A still valid istiodactylid pterosaur within a chimera". Palaeontologia Electronica. 27 (2). 27.2.a41. doi:10.26879/1359.
  399. ^ Ciaffi, A.; Bellardini, F. (2024). "Pterosaur teeth from the Southern Neuquén Basin (Patagonia, Argentina): New insights on the reconstruction of ornithocheiriform dental anatomy". Acta Palaeontologica Polonica. 69 (1): 73–86. doi:10.4202/app.01122.2023.
  400. ^ Griffin, B. W.; Martin-Silverstone, E.; Pêgas, R. V.; Meilak, E. A.; Costa, F. R.; Palmer, C.; Rayfield, E. J. (2024). "Modelling take-off moment arms in an ornithocheiraean pterosaur". PeerJ. 12. e17678. doi:10.7717/peerj.17678. PMC 11308997. PMID 39119105.
  401. ^ Cadena, E.-A.; Atuesta-Ortiz, D. A.; Wilson Mantilla, J. A. (2024). "New pterosaur fossils from the Early Cretaceous of Colombia". Journal of South American Earth Sciences. 151. 105273. doi:10.1016/j.jsames.2024.105273.
  402. ^ Song, J.; Jiang, S.; Wang, X. (2024). "Postcranial anatomy of Dsungaripterus weii (Pterosauria: Ornithocheiroidea) from the Lower Cretaceous of Wuerho, China". Journal of Vertebrate Paleontology. 44 (2). e2402042. doi:10.1080/02724634.2024.2402042.
  403. ^ Li, Y.; Wang, X.; Jiang, S.; Song, J. (2024). "First deciphering of large pterosaur footprints and their trackmaker in the Junggar Basin, China". Cretaceous Research. 167. 106036. doi:10.1016/j.cretres.2024.106036.
  404. ^ Jung, J.; Huh, M. (2024). "New Pterosaur Tracks from the Hwasun Seoyuri Tracksite (Turonian) of South Korea: Implications for their Ecological Niche and Habitat". Palaeogeography, Palaeoclimatology, Palaeoecology. 645. 112218. Bibcode:2024PPP...64512218J. doi:10.1016/j.palaeo.2024.112218.
  405. ^ Temp Müller, Rodrigo (2024). "A new "silesaurid" from the oldest dinosauromorph-bearing beds of South America provides insights into the early evolution of bird-line archosaurs". Gondwana Research. 137 (in press): 13–28. doi:10.1016/j.gr.2024.09.007.
  406. ^ Garcia, M. S.; Fonseca, A. O.; Doering, M.; da Rosa, Á. A. S.; Müller, R. T. (2024). "A new sympatric occurrence of lagerpetids (Pan-Aves, Pterosauromorpha) in the Upper Triassic of southern Brazil". Journal of South American Earth Sciences. 140. 104897. Bibcode:2024JSAES.14004897G. doi:10.1016/j.jsames.2024.104897.
  407. ^ Agnolín, F. L.; Novas, F. E.; Ezcurra, M. D.; Miner, S.; Müller, R. T. (2024). "Comments on the pelvic girdle anatomy of Lagerpeton chanarensis Romer, 1971 (Archosauria) and its implications on the posture and gait of early pterosauromorphs". The Anatomical Record. 307 (4): 1001–1010. doi:10.1002/ar.25389. PMID 38263641. S2CID 267197820.
  408. ^ Otero, A.; Bishop, P. J.; Hutchinson, J. R. (2024). "Hindlimb biomechanics of Lagosuchus talampayensis (Archosauria, Dinosauriformes), with comments on skeletal morphology". Journal of Anatomy. doi:10.1111/joa.14183. PMID 39630643.
  409. ^ Shipley, A. E.; Elsler, A.; Singh, S. A.; Stubbs, T. L.; Benton, M. J. (2024). "Locomotion and the early Mesozoic success of Archosauromorpha". Royal Society Open Science. 11 (2). 231495. Bibcode:2024RSOS...1131495S. doi:10.1098/rsos.231495. PMC 10846959. PMID 38328568.
  410. ^ Wilson, L. N.; Gardner, J. D.; Wilson, J. P.; Farnsworth, A.; Perry, Z. R.; Druckenmiller, P. S.; Erickson, G. M.; Organ, C. L. (2024). "Global latitudinal gradients and the evolution of body size in dinosaurs and mammals". Nature Communications. 15 (1). 2864. Bibcode:2024NatCo..15.2864W. doi:10.1038/s41467-024-46843-2. PMC 10997647. PMID 38580657.
  411. ^ Knoll, F.; Ishikawa, A.; Kawabe, S. (2024). "A proxy for brain-to-endocranial cavity index in non-neornithean dinosaurs and other extinct archosaurs". Journal of Comparative Neurology. 532 (3). e25597. doi:10.1002/cne.25597. PMID 38588163.
  412. ^ Malafaia, E.; Mocho, P.; Escaso, F.; Narvaéz, I.; Ortega, F. (2024). "Taxonomic and stratigraphic update of the material historically attributed to Megalosaurus from Portugal". Acta Palaeontologica Polonica. 69 (2): 127–171. doi:10.4202/app.01113.2023.
  413. ^ Amzil, M.; Oukassou, M.; Lallensack, J. N.; Klein, H.; Zafaty, O.; Saber, H.; Charrière, A.; Meyer, C.; Gierliński, G. D. (2024). "New dinosaur tracks from the Middle Jurassic red beds of the Middle Atlas (Morocco): Application of photogrammetry to ichnology and conservation of geological heritage". Proceedings of the Geologists' Association. 135 (4): 458–480. Bibcode:2024PrGA..135..458A. doi:10.1016/j.pgeola.2024.06.004.
  414. ^ MacLennan, S. A.; Sha, J.; Olsen, P. E.; Kinney, S. T.; Chang, C.; Fang, Y.; Liu, J.; Slibeck, B. B.; Chen, E.; Schoene, B. (2024). "Extremely rapid, yet noncatastrophic, preservation of the flattened-feathered and 3D dinosaurs of the Early Cretaceous of China". Proceedings of the National Academy of Sciences of the United States of America. 121 (47). e2322875121. doi:10.1073/pnas.2322875121. PMC 11588062. PMID 39495941.