Jump to content

Mathematical structure: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
References: stopping short of suggesting a merger
operations which preserve structures
Line 1: Line 1:
In [[mathematics]], a '''structure''' on a [[set]], or more generally a [[intuitionistic type theory|type]], consists of additional mathematical objects that in some manner attach to the set, making it easier to visualize or work with, or endowing the collection with meaning or significance.
In [[mathematics]], a '''structure''' on a [[set]], or more generally a [[intuitionistic type theory|type]], consists of additional mathematical objects that in some manner attach to the set, making it easier to visualize or work with, or endowing the collection with meaning or significance.


A partial list of possible structures are [[Measure theory|measures]], [[algebraic structure]]s ([[group (mathematics)|group]]s, [[field (mathematics)|field]]s, etc.), [[Topology|topologies]], [[Metric space|metric structures]] ([[Geometry|geometries]]), [[Order theory|orders]], and [[equivalence relation]]s.
A partial list of possible structures are [[Measure theory|measures]], [[algebraic structure]]s ([[group (mathematics)|group]]s, [[field (mathematics)|field]]s, etc.), [[Topology|topologies]], [[Metric space|metric structures]] ([[Geometry|geometries]]), [[Order theory|orders]], [[equivalence relation]]s, and [[differential structure]]s.


Sometimes, a set is endowed with more than one structure simultaneously; this enables mathematicians to study it more richly. For example, an order induces a topology. As another example, if a set both has a topology and is a group, and the two structures are related in a certain way, the set becomes a [[topological group]].
Sometimes, a set is endowed with more than one structure simultaneously; this enables mathematicians to study it more richly. For example, an order induces a topology. As another example, if a set both has a topology and is a group, and the two structures are related in a certain way, the set becomes a [[topological group]].

[[Map (mathematics)|Mappings]] between sets which preserve structures (so that structures in the domain are mapped to equivalent structures in the codomain) are of special interest in many fields of mathematics. Examples are [[homomorphism]]s, which preserve algebraic structures; [[homeomorphism]]s, which preserve topological structures; and [[diffeomorphism]]s, which preserve differential structures.


==Example: the real numbers==
==Example: the real numbers==

Revision as of 16:08, 5 July 2007

In mathematics, a structure on a set, or more generally a type, consists of additional mathematical objects that in some manner attach to the set, making it easier to visualize or work with, or endowing the collection with meaning or significance.

A partial list of possible structures are measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, equivalence relations, and differential structures.

Sometimes, a set is endowed with more than one structure simultaneously; this enables mathematicians to study it more richly. For example, an order induces a topology. As another example, if a set both has a topology and is a group, and the two structures are related in a certain way, the set becomes a topological group.

Mappings between sets which preserve structures (so that structures in the domain are mapped to equivalent structures in the codomain) are of special interest in many fields of mathematics. Examples are homomorphisms, which preserve algebraic structures; homeomorphisms, which preserve topological structures; and diffeomorphisms, which preserve differential structures.

Example: the real numbers

The set of real numbers has several standard structures:

  • an order: each number is either less or more than every other number.
  • algebraic structure: there are operations of multiplication and addition that make it into a field.
  • a measure: intervals along the real line have a certain length.
  • a metric: there is a notion of distance between points.
  • a geometry: it is equipped with a metric and is flat.
  • a topology: there is a notion of open sets. (this is implied by the metric)

There are interfaces among these:

  • Its order and, independently, its metrics structure induce its topology.
  • Its order and algebraic structure make it into an ordered field.
  • Its algebraic structure and topology make it into a Lie group, a type of topological group.

See also

References

  • "Structure". PlanetMath. (provides a categorical definition.)