Jump to content

Talk:Tsar Bomba: Difference between revisions

Page contents not supported in other languages.
From Wikipedia, the free encyclopedia
Content deleted Content added
SineBot (talk | contribs)
m Automatically signing comment made by Zencat01
Line 101: Line 101:
Claimed Tzar Bomba output = 5.4 x 10^24 watts for 39 nanoseconds
Claimed Tzar Bomba output = 5.4 x 10^24 watts for 39 nanoseconds


Either my physics is rusty, or something doesn't add up. <small>—Preceding [[Wikipedia:Signatures|unsigned]] comment added by [[User:Zencat01|Zencat01]] ([[User talk:Zencat01|talk]] • [[Special:Contributions/Zencat01|contribs]]) 05:15, 12 September 2007 (UTC)</small><!-- Template:Unsigned --> <!--Autosigned by SineBot-->
Either my physics is rusty, or something doesn't add up.


==Location==
==Location==

Revision as of 05:17, 12 September 2007

WikiProject iconMilitary history: Technology / Weaponry GA‑class
WikiProject iconThis article is within the scope of the Military history WikiProject. If you would like to participate, please visit the project page, where you can join the project and see a list of open tasks. To use this banner, please see the full instructions.
GAThis article has been rated as GA-class on the project's quality scale.
Associated task forces:
Taskforce icon
Military science, technology, and theory task force
Taskforce icon
Weaponry task force

PD-Soviet

The images on the page are under the PD-Soviet lisence which is being phased out on Commons, so we must find suitable tags and upload them to WP. (TV fair use should work for the images of the bomb explsion they were taken from Discovery Channel program on Tsar Bomba or something like that) --Saint-Paddy 17:14, 9 October 2006 (UTC)[reply]

The map

the map shows current borders. Shouldent it show borders at the time of the detenation?

Unreferenced claim

I removed the following: "Its enormous size made the bomb impractical for warfare purposes, and American historians believe it was constructed primarily for propaganda use in the Cold War." because:

  1. The unreasoned asserion of the first clause seems questionable.
  2. The emphasis on a particular nationalit yof (unnamed) historians seems odd.

Please restore it only if such claims can be substantiated. Thanks. --Guinnog 07:32, 21 October 2006 (UTC)[reply]

Three-stage devices and fusion tampers

"To limit fallout, the third stage, consisting of a uranium 238 fission tamper (which greatly amplifies the reaction by fissioning uranium atoms with fast neutrons from the fusion reaction), was replaced with one made of lead." This sentence is wrong. First, it implies that three-stage device necessarily means fission-fusion-fission device. It does not. A quote from http://www.cartage.org.lb/en/themes/sciences/chemistry/NuclearChemistry/NuclearWeapons/FirstChainReaction/TypesofNuclear/CombinedFission.htm "The fast fission of the secondary jacket in a fission-fusion-fission bomb is sometimes thought of, or referred to, as a "third stage" in the bomb, and it is in a sense. But care must be taken not to confuse this with the true three-stage thermonuclear design in which there is another complete tertiary fusion stage." The Tsar Bomba was a true three-stage device with a complete tertiary fusion stage. I strongly doubt it would be even possible to achieve 50 Mt yield with a single fusion stage without fast fission of the pusher/tamper of that stage. And it was the uranium pusher/tamper of the tertiary stage and possibly the pusher/tamper of the secondary stage which was(were) replaced with one(s) made of lead. The correct term would be fusion pusher/tamper as those stages were fusion stages. Fission tamper means the tamper of the primary stage, the fission trigger. Also the next sentence have to be changed to reflect the plurality of the fusion stages. I suggest someone else edit the article as my English is kinda crappy.130.234.5.136 17:13, 21 October 2006 (UTC)[reply]

Hmm, yeah, I think you're right on this. --Fastfission 20:05, 21 October 2006 (UTC)[reply]
Done a few days ago. Man with two legs 11:46, 12 February 2007 (UTC)[reply]

Ecology studies

An interesting aspect is what happened with ecology at the site of the explosion. Is any information available? I've heard a strange rumour that 100-megaton bomb wasn't exploded due to it would have caused irreversible extermination of local biosphere. Could it be true? ellol 15:47, 30 October 2006 (UTC)[reply]

Possibly but I suspect as this article states, they were more concerned about it's effect in the Soviet population Nil Einne 15:50, 30 October 2006 (UTC)[reply]

Effects on weather and climate

Were any studies done in the aftermath of the explosion on the effects of the presumably large amounts of dust, smoke, vapours and gasses pushed into the upper athmosphere on the weather/climate in the months and years afterwards ? 80.229.222.48 12:06, 6 September 2007 (UTC)[reply]

Disruption to radio communication

The article mentions that communication with the plane was lost following the explosion and it was about an hour before it could be verified that the crew were safe. How exactly did this occur ? Disruption to the ionosphere (if so was the effect localised or global and how long did it last) ? or EMP ? 80.229.222.48 12:06, 6 September 2007 (UTC)[reply]

Seismic wave

We need to add the info on the size of the seismic wave generated. Currently, it just says it was still detectable after three rounds but doesn't give a figure on the Ritcher scale Nil Einne 15:50, 30 October 2006 (UTC)[reply]

According to [1] the seisimic Richter magnitude was about mb = 5.00 to 5.25--SiriusB 12:39, 24 April 2007 (UTC)[reply]

Parachute debate

The "small" parachute seen in the article photo (barely larger then the diameter of the bomb casing) is not THE parachute, but only the drag chute! It was opened 2 seconds after releasing bomb from the Tu-95 airplane and served to stabilize the bomb casing nose-first and guide it away from the mother aircraft safely.

After several dozen seconds, this small drag chute separated, pulling out the main parachute, the legendary big one. I saw the film footage of an automatic ground TV zoom camera. At an altitude of 5000 meters the bomb case looked like a ladybug in the middle of a handkerchief, that big was that parachute!

(There are two versions of the Discovery Channel footage on Tsar Bomb, the rarely shown one features a single second of this, where the huge parachute is visible from below).

This is logical. If you consider the 27 metric ton weight of the bomb casing, that smallish drag chute, seen in the current article photo, could not slow the fall of the bomb long enough so that the dropping plane has time to escape while the bomb descends from 10,500 meters to 4,000 meters to detonate. So the parachute industry story is not a hoax. 195.70.32.136 17:01, 30 October 2006 (UTC)[reply]

Also you can read in this PDF file that americans were air-dropping 47,000 pound H-bomb dummies using 100ft parachutes back in 1952. The Tsar Bomb was somewhat heavier, so the nylon industry story is plausible. See: http://pdf.aiaa.org/preview/1989/PV1989_880.pdf

Power output comparison

About the sentence in the chapter "Test", saying: "This is equivalent to approximately 1% of the power output of the Sun." I think the matter is still not quite clear.

According to the Wikipedia article about the Sun, the energy output of the Sun is 3.8×1026 Watts per second. This is not directly comparable to the total power output of the bomb without doing some time conversions:

The duration of energy release of the Tsar Bomb cited was 3.9×10-8 seconds, during which time the total energy of the bomb was released. However, during this same time, the Sun releases energy in the amount of

3.8×1026 W/s * 3.9×10-8 s = 1.5×1019 W,

which is 35000 times less than the energy released by the bomb (5.3×1024 Watts) in the same amount of time. Now I'm not sure if I'm entirely correct with my calculation, as mathematics is not my strength. Please check the calculation if necessary.

What I wanted to say, however, that the article still needs clarification in the comparison to the Sun.

-Didi7 17:08, 15 November 2006 (UTC)[reply]

No. You misunderstood the Sun article. It says:
"380 yottawatts (3.8×1026 W) or 9.1×1010 megatons of TNT per second"
where the "per second" refers only to the megatons, not to the yottawatts. A megaton is a unit of energy and a watt is a unit of power. Power is energy output per unit of time and in this case watts per second don't make sense.
Perhaps it's the Sun article that need clarifying?130.234.5.136 23:08, 22 November 2006 (UTC)[reply]

-I removed the 1% claim. That would mean that sophisticated weaponry and large scale meteorite impacts create flashes comparable to stars. Present day radio astronomy enables us to view much smaller flashes. Astronomy is not my field of expertize, but as far as I know, this phenomenum is yet unrecorded. Please correct me if I am mistaken but 1% seems to be the most unrealistically high number. There must be a calculation error somewhere.

There is no calculation error. The energy output was that high only for a very brief time during the third stage burn - roughly 40 billionths of a second. Please ask first rather than just deleting like that. Thanks. Georgewilliamherbert 17:44, 7 July 2007 (UTC)[reply]

Let's calculate the actual energy release compared to the sun:

Sun is 3.8 x 10^23 kiloWatts/sec Divide by 1.0 x 10^9 sec to get the net output per nanosecond give us: Sun output = 3.8 x 10^14 kiloWatts/nanosec x 1000 to get watts. Sun output per nanosec = 3.8 x 10^17 watts Sun output for 39 nanosecs = 3.8 x 10^17 watts x 39 = 1.482 x 10^19 watts over 39 nanoseconds Claimed Tzar Bomba output = 5.4 x 10^24 watts for 39 nanoseconds

Either my physics is rusty, or something doesn't add up. —Preceding unsigned comment added by Zencat01 (talkcontribs) 05:15, 12 September 2007 (UTC)[reply]

Location

73.85 N 54.50 E is on the North Island of Novaya Zemlya. On the Google Earth satellite imagery of that area, there appears to be a somewhat darkened eliptical area with jagged edges which is some 2,7 km wide and about twice that long, but it could just be valleys lying in the shadow. This area is some 50 km to the northeast of the Mityushikha Bay.

The link to Google Maps, where you can see the "4 km depression" on the satellite image, points to a location about 230 km away from 73.85 N 54.50 E, on the South Island. It is located at 72.00 N 52.06, which is some 175 km south of Mityushikha Bay.

Can anybody resolve these contradictions?--Cancun771 12:16, 28 January 2007 (UTC)[reply]

Today I deleted the link to the Google map. I have no clue what the geographical feature is that you can see there but in all probability it can't have anything to do with Tsar Bomba. It is hundreds of kilometers away from the coordinates given in the article itself, from the Mityushikha Bay mentioned on http://www.nuclearweaponarchive.org/Russia/TsarBomba.html, and from the test area called "Sukhoy Nos" where, according to the wiki on Novaya Zemlya, the test took place. In fact, that wiki mentions only three test areas and the location on this Google map wasn't too close to either of them. Also, compare the s ource mentioned on Novaya Zemlya, http://www.princeton.edu/~globsec/publications/pdf/13_1-2khalturin%20NZ%201-42%20.pdf --Cancun771 11:16, 4 February 2007 (UTC)[reply]

I agree, that source seems to be the best available. I just thought I'd mention that in a video of the buildup to the explosion and the explosion itself [2] Soviet officers are shown looking at a map, which then has locations for the plane take-off and bomb release superimposed (02:02). The approximate coordinates for the explosion predicted are 72°28'N 54°55'E. The Russians never actually released coordinates for their airburst tests on the island, so could this be an accidental giveaway, or perhaps a purposeful misleading of the viewer? (or some guy splicing together file footage) Howboutpete 01:28, 21 April 2007 (UTC)[reply]

No source for windows in Finland.

This is highly improbable. Why didn't it break all the windows in the homes of millions of people closer to the blast site than Finland? If this is true, the article needs a source for it. —The preceding unsigned comment was added by 76.173.68.215 (talk) 03:15, 16 March 2007 (UTC).[reply]

The closest large city to Novaya Zemlya is Murmansk, then a closed Soviet city. There aren't "millions of people closer" than closest part of Finland (also a remote area). The closest "western" settlement to the site, however, is Kirknäs/Kirkkoniemi, Norway.82.181.150.151 20:35, 30 March 2007 (UTC)[reply]

Satelite navigation on a nuclear weapon?

The article says: "However, the advent of ICBMs accurate to 500 meters or better, and especially the advent of satellite navigation, made such a design philosophy obsolete" How would this work in a nuclear war? Not for very long I think. 82.181.150.151 20:25, 30 March 2007 (UTC)[reply]

That whole section look suspect to me. As the article says near the top, this bomb was about sabre rattling and not a serious weapon. Man with two legs 20:31, 30 March 2007 (UTC)[reply]
So, I'll remove mentions of benefits of satelite navigation on a nuclear weapon. Reason: I have been unable to find any proof that sat. guided nuclear weapons exist (or could survive and be use in a n. war). Gyro/inertia guidance became very accurate after the Tsar Bomba's time any way. 82.181.150.151 18:48, 23 April 2007 (UTC)[reply]

An interesting note is that, in addition to reducing fallout, the Soviet government was forced to reduce it to a 40 megaton shell. Why? At 100 megatons there was no platform that could properly carry it. So it was a test of a large bomb. Research and propoganda, but not a practical device.

--Hrimpurstala 18:36, 2 April 2007 (UTC)[reply]

That's not true. It was a 100-megaton bomb design... if fired with fissionable uranium tampers for the second and third fusion stages. It was fired "clean", with lead or tungsten tampers, which reduced the yield by about a factor of two, and the fallout by about a factor of 10. The bomb as it was dropped was clearly impractical to carry; the bomber's bottom had to be partly rebuilt to carry it, half hanging out the bottom of the airframe, and there was no way they could have flown it to the United States to drop it on anything. It was a propaganda project; the researchers already knew enough from smaller weapons to know how it would work, though it did validate their theories. Georgewilliamherbert 19:51, 3 April 2007 (UTC)[reply]
There might be crossed wires here: clearly the 100MT version was droppable, but it has been suggested that the aircraft would (a) not be able to carry it far, (b) would get shot down anyway and (c) not have been able to get far enough away before it went off. So whether you two disagree or not is not clear to me. Man with two legs 09:38, 4 April 2007 (UTC)[reply]
What was dropped was a 100-megaton version... fired with "clean" non-uranium fusion tampers, at half max yield. The size and weight of the bomb, other components, etc. are identical between the versions, it's just substituting lead or tungsten for uranium in a tamper layer. Georgewilliamherbert 19:20, 4 April 2007 (UTC)[reply]

Comparison image

An image to compare the size of the Tsar Bomba mushroom cloud to the Hiroshima mushroom cloud would be a good addition to the article. Then it would give readers a general idea on how powerful the bomb was and how such a large bomb was such a mistake. —The preceding unsigned comment was added by TheOtherSiguy (talkcontribs) 20:14, 7 April 2007 (UTC).[reply]

Excellent idea, if anyone can create an appropriate graphic. Tempshill 16:14, 1 August 2007 (UTC)[reply]

Fireball sizes: diameter or radius?

The sizes shown in the illustration are most probably the radii rather than the diameters. According to Image:Nuclear_Fireball_Radius_and_Temperature.png (which uses data from Glasstone and Dolan, 1977) and several other sources, the final diameter of the glowing fireball of a 20 kiloton air burst is about 400 to 500 metres. The diameter scales with approx. Yield0.39 which implies a diameter of about 9500 metres for a 50 megaton air burst (and even larger due to the lower air pressure at higher altitudes). Thus, the sizes given on the image description page of Image:Comparative_nuclear_fireball_sizes.svg are actually half radii or quarters of diameters. According to the Tsar Bomba article at Nuclear Weapon Archive the fireball reached the ground despite the burst altitude of 4000 m, thus the downward radius must have been at least 4000 m. The upward radius may have been even larger for reasons given above resulting in a diameter of probably larger than 8000 m. However, the diagram may refer to the diameter at an early stage of the fireball, but that would be somewhat arbitrary since the minimum possible size of the initial fireball is just the size of the bomb itself (a few metres).--SiriusB 20:24, 8 April 2007 (UTC)[reply]

Codename: IVAN

I think the codename may actually have been "BIG IVAN" [3] Is there a source for IVAN? Howboutpete 01:09, 21 April 2007 (UTC)[reply]

Theoretical Images of a blast

I think this page would be greatly improved with a couple of images, specifically:

  • A comparison with other nuclear blasts such as this one
  • A map of a well known and populous area (e.g. western europe) with the damage radius overlayed. perhaps with "concentric rings" showing the fireball radius, the 3rd degree burn radius and the blast damage radius.

Though morbid, this would provide an immediate understanding of the significance of the weapon. Witty Lama 15:40, 24 April 2007 (UTC)[reply]

I agree, that would be very interesting. --84.9.76.147 23:26, 19 June 2007 (UTC)[reply]
The link is to an image that is a misleading bar graph which shows the mushroom cloud's height, width and depth to be proportional to the yield, which they aren't. This misuse of graphs is an old propaganda trick similar to one used by governments to give a false impression of how much they have increased spending: it makes a 2x increase have the visual impact of an 8x increase. Man with two legs 23:34, 19 June 2007 (UTC)[reply]
I could run up images of the various PSI overpressure and thermal and radiation damage radii for Tsar Bomba and other prior nuclear weapons. Would that be useful? Do you have suggestions for a location or locations to show in the maps? Georgewilliamherbert 00:16, 20 June 2007 (UTC)[reply]
Sounds good to me. Mark Grant 00:38, 20 June 2007 (UTC)[reply]
By choosing the locations appropriately, you could do a vast amount of mischief! I would suggest London essentially because I think that the British would be laid back and unoffended about that in the way that, for example, the Israelis would not (my own house would be not vaporised but well damaged). Also, there are lots of other places nearby, including France. Man with two legs 22:15, 20 June 2007 (UTC)[reply]

It was not cut down from 100 megatons to 50 because of fallout.

The soviets could not obtain the materials in time to make the Uranium tamper, so they used lead. They didnt reduce the fallout as a gesture of goodwill. This article reaks of communist propaganda.

please put youre signature after your remark--Cbennett0811 22:31, 19 August 2007 (UTC)[reply]

A fusion tamper is made of depleted uranium which is a byproduct of enrichment and so more or less free, so your assertion is not obviously true and needs a citation. And why do you think the article is commmunist propaganda? The word goodwill does not appear in the article, reducing fallout is sensible anyway, and the article does not say anything nice about communism. Man with two legs 17:58, 17 May 2007 (UTC)[reply]
The source for that comment (reduced to lessen fallout) is: Andrei Sakharov. 1990. Memoirs, New York: Alfred A. Knopf, pp. 215-225, ISBN 0-679-73595-X. This is considered a reliable source. In addition, a surface or near-surface burst of the dirty 100mt weapon would produce rapidly lethal fallout five hundred miles away, making testing it anywhere on Earth's surface risky. In addition, the comment above about DU or natural uranium availibility is accurate as well. Georgewilliamherbert 18:02, 17 May 2007 (UTC)[reply]