Global warming potential: Difference between revisions
Reverted 1 edit by 24.1.94.115; Coi, wikilinked articles contain spamish external links that the anon added . using TW |
|||
Line 75: | Line 75: | ||
== See also == |
== See also == |
||
* [[Carbon dioxide equivalent]] |
* [[Carbon dioxide equivalent]] |
||
* [[Carbon Project]] |
|||
* [[Emission factor]] |
* [[Emission factor]] |
||
* [[Emission standard]] |
* [[Emission standard]] |
||
* [[Emissions trading]] |
|||
* [[Greenhouse gas inventory]] |
|||
==External links== |
==External links== |
Revision as of 08:13, 17 January 2008
It has been suggested that Greenhouse warming potential be merged into this article. (Discuss) Proposed since November 2007. |
Global warming potential (GWP) is a measure of how much a given mass of greenhouse gas is estimated to contribute to global warming. It is a relative scale which compares the gas in question to that of the same mass of carbon dioxide (whose GWP is by definition 1). A GWP is calculated over a specific time interval and the value of this must be stated whenever a GWP is quoted or else the value is meaningless.
Calculation
Just as radiative forcing provides a simplified means of comparing the various factors that are believed to influence the climate system to one another, Global Warming Potentials (GWPs) are one type of simplified index based upon radiative properties that can be used to estimate the potential future impacts of emissions of different gases upon the climate system in a relative sense.
GWP is based on a number of factors, including the radiative efficiency (heat-absorbing ability) of each gas relative to that of carbon dioxide, as well as the decay rate of each gas (the amount removed from the atmosphere over a given number of years) relative to that of carbon dioxide [1].
The Intergovernmental Panel on Climate Change (IPCC) provides the generally accepted values for GWP, which changed slightly between 1996 and 2001. An exact definition of how GWP is calculated is to be found in the IPCC's 2001 Third Assessment Report. The GWP is defined as the ratio of the time-integrated radiative forcing from the instantaneous release of 1 kg of a trace substance relative to that of 1 kg of a reference gas:
where: TH is the time horizon over which the calculation is considered; ax is the radiative efficiency due to a unit increase in atmospheric abundance of the substance (i.e., Wm-2 kg-1) and [x(t)] is the time-dependent decay in abundance of the substance following an instantaneous release of it at time t=0. The denominator contains the corresponding quantities for the reference gas (i.e. CO2). The radiative efficiencies ax and ar are not necessarily constant over time. While the absorption of infrared radiation by many greenhouse gases varies linearly with their abundance, a few important ones display non-linear behaviour for current and likely future abundances (e.g., CO2, CH4, and N2O). For those gases, the relative radiative forcing will depend upon abundance and hence upon the future scenario adopted.
Since all GWP calculations are a comparison to CO2 which is non-linear, all GWP values are affected. Assuming otherwise as is done above will lead to lower GWPs for other gases than a more detailed approach would.
Use in Kyoto Protocol
Under the Kyoto protocol, the Conference of the Parties decided (decision 2/CP.3) [2] that the values of GWP calculated for the IPCC Second Assessment Report are to be used for converting the various greenhouse gas emissions into comparable CO2 equivalents when computing overall sources and sinks.
Importance of time horizon
Note that a substance's GWP depends on the timespan over which the potential is calculated. A gas which is quickly removed from the atmosphere may initially have a large effect but for longer time periods as it has been removed becomes less important. Thus methane has a potential of 23 over 100 years but 62 over 20 years; conversely sulfur hexafluoride has a GWP of 22,000 over 100 years but 15,100 over 20 years (IPCC TAR). The GWP value depends on how the gas concentration decays over time in the atmosphere. This is often not precisely known and hence the values should not be considered exact. For this reason when quoting a GWP it is important to give a reference to the calculation.
The GWP for a mixture of gases can not be determined from the GWP of the constituent gases by any form of simple linear addition.
Generally, it is by regulators (i.e. CARB) the time horizon of 100 years.
Values
Carbon dioxide has a GWP of exactly 1 (since it is the baseline unit to which all other greenhouse gases are compared.)
Gas | Lifetime (years) | GWP time horizon | ||
---|---|---|---|---|
Methane | 12 (12) | 72 (62) | 25 (23) | 7.6 (7) |
Nitrous oxide | 114 (114) | 310 (275) | 298 (296) | 153 (156) |
HFC-23 (hydrofluorocarbon) | 270 (260) | 12000 (9400) | 14800 (12000) | 12200 (10000) |
HFC-134a (hydrofluorocarbon) | 14 (13.8) | 3830 (3300) | 1430 (1300) | 435 (400) |
sulfur hexafluoride | 3200 (3200) | 16300 (15100) | 22800 (22200) | 32600 (32400) |
A GWP is not usually calculated for water vapor. Water vapour has a significant influence with regard to absorbing IR-radiation; however its concentration in the atmosphere mainly depends on air temperature. As there is no possibility to directly influence atmospheric water vapour concentration, the GWP-level for water vapour is not calculated; see greenhouse gas.
See also
External links
- 2007 IPCC Fourth Assessment Report (AR4) by Working Group 1 (WG1) and Chapter 2 of that report (Changes in Atmospheric Constituents and in Radiative Forcing) which contains GWP information.
- 2001 IPCC Third Assessment Report (TAR) page on Global Warming Potentials and Direct GWP.
- List of Global Warming Potentials and Atmospheric Lifetimes from the U.S. EPA
- Greenhouse Gases and Global Warming Potential Values, Excerpt from the Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2000 from the U.S. EPA
- An overview of the role of H2O as a greenhouse gas