Jones calculus: Difference between revisions
Appearance
Content deleted Content added
HarpyHumming (talk | contribs) Added the polarizer matrix for arbitrary azimuth |
add wave plate matrices, widen tables (they looked awful on my screen) |
||
Line 2: | Line 2: | ||
The following table gives examples of Jones vectors. (<math>i</math> is the [[imaginary unit]], i.e., <math>\sqrt{-1}</math>.) |
The following table gives examples of Jones vectors. (<math>i</math> is the [[imaginary unit]], i.e., <math>\sqrt{-1}</math>.) |
||
<table BORDER CELLSPACING=0 CELLPADDING=0 COLS=9 WIDTH=" |
<table BORDER CELLSPACING=0 CELLPADDING=0 COLS=9 WIDTH="25%" BGCOLOR="#EEEEEE" > |
||
<TR><TD width=300 ALIGN=CENTER><B>Polarisation</B></TD><TD width=240 ALIGN=CENTER><B>Corresponding Jones vector</B></TD></TR> |
<TR><TD width=300 ALIGN=CENTER><B>Polarisation</B></TD><TD width=240 ALIGN=CENTER><B>Corresponding Jones vector</B></TD></TR> |
||
<TR><TD width=300 ALIGN=LEFT>Linear polarized in the x-direction</TD><TD width=240 ALIGN=CENTER> |
<TR><TD width=300 ALIGN=LEFT>Linear polarized in the x-direction</TD><TD width=240 ALIGN=CENTER> |
||
Line 22: | Line 22: | ||
The following table gives examples of Jones matrices. |
The following table gives examples of Jones matrices. |
||
<table BORDER CELLSPACING=0 CELLPADDING=0 COLS=9 WIDTH=" |
<table BORDER CELLSPACING=0 CELLPADDING=0 COLS=9 WIDTH="50%" BGCOLOR="#EEEEEE" > |
||
<TR><TD width=400 ALIGN=CENTER><B>Optical element</B></TD><TD width=240 ALIGN=CENTER><B>Corresponding Jones matrix</B></TD></TR> |
<TR><TD width=400 ALIGN=CENTER><B>Optical element</B></TD><TD width=240 ALIGN=CENTER><B>Corresponding Jones matrix</B></TD></TR> |
||
<TR><TD width=400 ALIGN=LEFT>Linear polarizer with axis of transmission horizontal</TD><TD width=240 ALIGN=CENTER> |
<TR><TD width=400 ALIGN=LEFT>Linear polarizer with axis of transmission horizontal</TD><TD width=240 ALIGN=CENTER> |
||
Line 60: | Line 60: | ||
<math>\frac12 \begin{pmatrix} |
<math>\frac12 \begin{pmatrix} |
||
1 & i \\ -i & 1 |
1 & i \\ -i & 1 |
||
\end{pmatrix}</math> |
|||
</TD></TR> |
|||
<TR><TD width=400 ALIGN=LEFT>Half-[[wave plate]] with fast axis pointing along x-direction</TD><TD width=240 ALIGN=CENTER> |
|||
<math>\begin{pmatrix} |
|||
-i & 0 \\ 0 & i |
|||
\end{pmatrix}</math> |
|||
</TD></TR> |
|||
<TR><TD width=400 ALIGN=LEFT>Quarter-wave plate with fast axis pointing along x-direction</TD><TD width=240 ALIGN=CENTER> |
|||
<math>\begin{pmatrix} |
|||
\frac12 - \frac i2 & 0 \\ 0 & \frac12 + \frac i2 |
|||
\end{pmatrix}</math> |
\end{pmatrix}</math> |
||
</TD></TR> |
</TD></TR> |
Revision as of 19:36, 17 May 2004
In optics one can describe polarisation using the Jones calculus, invented by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarisation of the emerging light is simply the Jones matrix of the optical element multiplied by the Jones vector of the incident light.
The following table gives examples of Jones vectors. ( is the imaginary unit, i.e., .)
Polarisation | Corresponding Jones vector |
Linear polarized in the x-direction |
|
Linear polarized in the y-direction |
|
Linear polarized at 45 degrees from the x-axis |
|
Left circular polarized |
|
Right circular polarized |
|
The following table gives examples of Jones matrices.
Optical element | Corresponding Jones matrix |
Linear polarizer with axis of transmission horizontal |
|
Linear polarizer with axis of transmission vertical |
|
Linear polarizer with axis of transmission at 45 degrees |
|
Linear polarizer with axis of transmission at -45 degrees |
|
Linear polarizer with axis of transmission at radian |
|
Left circular polarizer |
|
Right circular polarizer |
|
Half-wave plate with fast axis pointing along x-direction |
|
Quarter-wave plate with fast axis pointing along x-direction |
|
See also:
External links: