Jump to content

Jones calculus: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Added the polarizer matrix for arbitrary azimuth
Tantalate (talk | contribs)
add wave plate matrices, widen tables (they looked awful on my screen)
Line 2: Line 2:


The following table gives examples of Jones vectors. (<math>i</math> is the [[imaginary unit]], i.e., <math>\sqrt{-1}</math>.)
The following table gives examples of Jones vectors. (<math>i</math> is the [[imaginary unit]], i.e., <math>\sqrt{-1}</math>.)
<table BORDER CELLSPACING=0 CELLPADDING=0 COLS=9 WIDTH="12%" BGCOLOR="#EEEEEE" >
<table BORDER CELLSPACING=0 CELLPADDING=0 COLS=9 WIDTH="25%" BGCOLOR="#EEEEEE" >
<TR><TD width=300 ALIGN=CENTER><B>Polarisation</B></TD><TD width=240 ALIGN=CENTER><B>Corresponding Jones vector</B></TD></TR>
<TR><TD width=300 ALIGN=CENTER><B>Polarisation</B></TD><TD width=240 ALIGN=CENTER><B>Corresponding Jones vector</B></TD></TR>
<TR><TD width=300 ALIGN=LEFT>Linear polarized in the x-direction</TD><TD width=240 ALIGN=CENTER>
<TR><TD width=300 ALIGN=LEFT>Linear polarized in the x-direction</TD><TD width=240 ALIGN=CENTER>
Line 22: Line 22:


The following table gives examples of Jones matrices.
The following table gives examples of Jones matrices.
<table BORDER CELLSPACING=0 CELLPADDING=0 COLS=9 WIDTH="12%" BGCOLOR="#EEEEEE" >
<table BORDER CELLSPACING=0 CELLPADDING=0 COLS=9 WIDTH="50%" BGCOLOR="#EEEEEE" >
<TR><TD width=400 ALIGN=CENTER><B>Optical element</B></TD><TD width=240 ALIGN=CENTER><B>Corresponding Jones matrix</B></TD></TR>
<TR><TD width=400 ALIGN=CENTER><B>Optical element</B></TD><TD width=240 ALIGN=CENTER><B>Corresponding Jones matrix</B></TD></TR>
<TR><TD width=400 ALIGN=LEFT>Linear polarizer with axis of transmission horizontal</TD><TD width=240 ALIGN=CENTER>
<TR><TD width=400 ALIGN=LEFT>Linear polarizer with axis of transmission horizontal</TD><TD width=240 ALIGN=CENTER>
Line 60: Line 60:
<math>\frac12 \begin{pmatrix}
<math>\frac12 \begin{pmatrix}
1 & i \\ -i & 1
1 & i \\ -i & 1
\end{pmatrix}</math>
</TD></TR>
<TR><TD width=400 ALIGN=LEFT>Half-[[wave plate]] with fast axis pointing along x-direction</TD><TD width=240 ALIGN=CENTER>
<math>\begin{pmatrix}
-i & 0 \\ 0 & i
\end{pmatrix}</math>
</TD></TR>
<TR><TD width=400 ALIGN=LEFT>Quarter-wave plate with fast axis pointing along x-direction</TD><TD width=240 ALIGN=CENTER>
<math>\begin{pmatrix}
\frac12 - \frac i2 & 0 \\ 0 & \frac12 + \frac i2
\end{pmatrix}</math>
\end{pmatrix}</math>
</TD></TR>
</TD></TR>

Revision as of 19:36, 17 May 2004

In optics one can describe polarisation using the Jones calculus, invented by R. C. Jones in 1941. Polarized light is represented by a Jones vector, and linear optical elements are represented by Jones matrices. When light crosses an optical element the resulting polarisation of the emerging light is simply the Jones matrix of the optical element multiplied by the Jones vector of the incident light.

The following table gives examples of Jones vectors. ( is the imaginary unit, i.e., .)

PolarisationCorresponding Jones vector
Linear polarized in the x-direction

Linear polarized in the y-direction

Linear polarized at 45 degrees from the x-axis

Left circular polarized

Right circular polarized


The following table gives examples of Jones matrices.

Optical elementCorresponding Jones matrix
Linear polarizer with axis of transmission horizontal

Linear polarizer with axis of transmission vertical

Linear polarizer with axis of transmission at 45 degrees

Linear polarizer with axis of transmission at -45 degrees

Linear polarizer with axis of transmission at radian

Left circular polarizer

Right circular polarizer

Half-wave plate with fast axis pointing along x-direction

Quarter-wave plate with fast axis pointing along x-direction



See also:


External links: