Jump to content

Image sensor format: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Bridging the gap in sensor sizes: Reworded for style, avoiding undue weight on the Epson R-D1
Line 369: Line 369:
From 2005 there was an increasing interest in producing medium-sized cameras with large sensors but without the moving mirror systems, and consequently the bulk, typical of DSLR camera bodies.
From 2005 there was an increasing interest in producing medium-sized cameras with large sensors but without the moving mirror systems, and consequently the bulk, typical of DSLR camera bodies.


Manufacturers gradually responded to this interest, which led to a new type: the [[mirrorless interchangeable-lens camera]]. [[Epson]], an early entrant, introduced the [[Epson R-D1|R-D1]], a digital rangefinder using the [[Leica M]] mount. Other companies followed suit, by introducing similar cameras that focus electronically rather than manually (such as Olympus, with its PEN series; Panasonic, with its G and GF series; Sony, with its Nex series; Samsung, with its NX series). MILC cameras might overall look like compact digital ones, with at least two notable differences: a sensor in most cases of the size found in digital SLRs, and interchangeable lenses. The latter feature, though,
Manufacturers gradually responded to this interest, which led to a new type: the [[mirrorless interchangeable-lens camera]]. An early example is the [[Epson R-D1]], a digital rangefinder using the [[Leica M]] mount. Other companies followed suit, by introducing similar cameras that focus electronically rather than manually (such as Olympus, with its PEN series; Panasonic, with its G and GF series; Sony, with its Nex series; Samsung, with its NX series). MILC cameras might overall look like compact digital ones, with at least two notable differences: a sensor in most cases of the size found in digital SLRs, and interchangeable lenses. The latter feature, though,
was incorporated in at least one small-sensor camera as well (Pentax Q, announced in June 2011).
was incorporated in at least one small-sensor camera as well (Pentax Q, announced in June 2011).



Revision as of 17:53, 12 July 2013

Comparative dimensions of sensor sizes

In digital photography, the image sensor format is the shape and size of the image sensor.

The image sensor format of a digital camera determines the angle of view of a particular lens when used with a particular camera. In particular, image sensors in digital SLR cameras tend to be smaller than the 24 mm × 36 mm image area of full-frame 35 mm cameras, and therefore lead to a narrower angle of view.

Lenses produced for 35 mm film cameras may mount well on the digital bodies, but the larger image circle of the 35 mm system lens allows unwanted light into the camera body, and the smaller size of the image sensor compared to 35 mm film format results in cropping of the image. This latter effect is known as field of view crop. The format size ratio (relative to the 35 mm film format) is known as the field of view crop factor, crop factor, lens factor, focal length conversion factor, focal length multiplier or lens multiplier.

Sensor size and depth of field

Three possible depth of field comparisons between formats are discussed, applying the formulae derived in the article on depth of field. The depths of field of the three cameras may be the same, or different in either order, depending on what is held constant in the comparison.

Considering a picture with the same subject distance and angle of view for two different formats:

so the DOFs are in inverse proportion to the absolute aperture diameters and .

Using the same absolute aperture diameter for both formats with the “same picture” criterion (equal angle of view, magnified to same final size) yields the same depth of field. It is equivalent to adjusting the f-number inversely in proportion to crop factor – a smaller f-number for smaller sensors. (This also means that, when holding the shutter speed fixed, the exposure is changed by the adjustment of the f-number required to equalise depth of field. But the aperture area is held constant, so sensors of all sizes receive the same total amount of light energy from the subject. The smaller sensor is then operating at a lower ISO setting, by the square of the crop factor.)

And, we might compare the depth of field of sensors receiving the same photometric exposure – the f-number is fixed instead of the aperture diameter – the sensors are operating at the same ISO setting in that case, but the smaller sensor is receiving less total light, by the area ratio. The ratio of depths of field is then

where and are the characteristic dimensions of the format, and thus is the relative crop factor between the sensors. It is this result that gives rise to the common opinion that small sensors yield greater depth of field than large ones.

An alternative is to consider the depth of field given by the same lens in conjunction with different sized sensors (changing the angle of view). The change in depth of field is brought about by the requirement for a different degree of enlargement to achieve the same final image size. In this case the ratio of depths of field becomes

.

Sensor size, noise and dynamic range

Discounting pixel response non-uniformity (PRNU), which is not intrinsically sensor-size dependent, the noises in an image sensor are photon shot noise, read noise, and dark noise. The overall signal to noise ratio of a sensor (SNR), observed at the scale of a single pixel, is

where is the incident photon flux (photons per second in the area of a pixel), is the quantum efficiency, is the exposure time, is the pixel dark current in electrons per second and is the pixel read noise in electrons.[1]

Each of these noises has a different dependency on sensor size.

Exposure and photon flux

Image sensor noise can be compared across formats for a given fixed photon flux per pixel area (the P in the formulas); this analysis is useful for a fixed number of pixels with pixel area proportional to sensor area, and fixed absolute aperture diameter for a fixed imaging situation in terms of depth of field, diffraction limit at the subject, etc. Or it can be compared for a fixed focal-plane illuminance, corresponding to a fixed f-number, in which case P is proportional to pixel area, independent of sensor area. The formulas above and below can be evaluated for either case.

Shot noise

In the above equation, the shot noise SNR is given by

.

Apart from the quantum efficiency it depends on the incident photon flux and the exposure time,which is equivalent to the exposure and the sensor area; since the exposure is the integration time multiplied with the image plane illuminance, and illuminance is the luminous flux per unit area. Thus for equal exposures, the signal to noise ratios of two different size sensors of equal quantum efficiency and pixel count will (for a given final image size) be in proportion to the square root of the sensor area (or the linear scale factor of the sensor). If the exposure is constrained by the need to achieve some required depth of field (with the same shutter speed) then the exposures will be in inverse relation to the sensor area, producing the interesting result that if depth of field is a constraint, image shot noise is not dependent on sensor area.

Read noise

The read noise is the total of all the electronic noises in the conversion chain for the pixels in the sensor array. To compare it with photon noise, it must be referred back to its equivalent in photoelectrons, which requires the division of the noise measured in volts by the conversion gain of the pixel. This is given, for an active pixel sensor, by the voltage at the input (gate) of the read transistor divided by the charge which generates that voltage, . This is the inverse of the capacitance of the read transistor gate (and the attached floating diffusion) since capacitance .[2] Thus .

In general for a planar structure such as a pixel, capacitance is proportional to area, therefore the read noise scales down with sensor area, as long as pixel area scales with sensor area, and that scaling is performed by uniformly scaling the pixel.

Considering the signal to noise ratio due to read noise at a given exposure, the signal will scale as the sensor area along with the read noise and therefore read noise SNR will be unaffected by sensor area. In a depth of field constrained situation, the exposure of the larger sensor will be reduced in proportion to the sensor area, and therefore the read noise SNR will reduce likewise.

Dark noise

The dark current contributes two kinds of noise: dark offset, which is only partly correlated between pixels, and the shot noise associated with dark offset, which is uncorrelated between pixels. Only the shot-noise component Dt is included in the formula above, since the uncorrelated part of the dark offset is hard to predict, and the correlated or mean part is relatively easy to subtract off. The mean dark current contains contributions proportional both to the area and the linear dimension of the photodiode, with the relative proportions and scale factors depending on the design of the photodiode.[3] Thus in general the dark noise of a sensor may be expected to rise as the size of the sensor increases. However, in most sensors the mean pixel dark current at normal temperatures is small, lower than 50 e- per second,[4] thus for typical photographic exposure times dark current and its associated noises may be discounted. At very long exposure times, however, it may be a limiting factor. And even at short or medium exposure times, a few outliers in the dark-current distribution may show up as "hot pixels".

Dynamic range

Dynamic range is the ratio of the largest and smallest recordable signal, the smallest being typically defined by the 'noise floor'. In the image sensor literature, the noise floor is taken as the readout noise, so [5] (note, the read noise is the same quantity as referred to in[1])

The measurement here is made at the level of a pixel (which strictly means that the DR of sensors with different pixel counts is measured over a different spatial bandwidth, and cannot be compared without normalisation). If we assume sensors with the same pixel count but different sizes, then the pixel area will be in proportion to the sensor area. If the maximum exposure (amount of light per unit area) is the same then both the maximum signal and the read noise reduce in proportion to the pixel (and therefore the sensor) area, so the DR does not change. If the comparison is made according to DOF limited conditions, so that the exposure of the larger sensor is reduced in proportion to the area of the sensor (and pixel, for sensors with equal pixel count) then is constant, and the read noise () falls with the sensor area, leading to a higher dynamic range for the smaller sensor. Summarising the above discussion, considering separately the parts of the image signal to noise ratio due to photon shot noise and read noise and their relation to the linear sensor size ratio or 'crop factor' (remembering that conventionally crop factor increases as the sensor gets smaller) then:

Shot noise SNR Read noise SNR Dynamic range
Fixed exposure Inversely proportional to crop factor No change No change
DOF constrained No change Proportional to square of crop factor Proportional to square of crop factor

It should be noted that this discussion isolates the effects of sensor scale on SNR and DR, in reality there are many other factors which affect both these quantities.

Sensor size and diffraction

The resolution of all optical systems is limited by diffraction. One way of considering the effect that diffraction has on cameras using different sized sensors is to consider the modulation transfer function (MTF) due to diffraction, which will contribute a factor to the overall system MTF along with the other factors, typically the MTFs of the lens, anti-aliasing filter and sensor sampling window.[6] The spatial cut-off frequency due to diffraction through a lens aperture is

where λ is the wavelength of the light passing through the system and N is the f-number of the lens. If that aperture is circular, as are (approximately) most photographic apertures, then the MTF is given by

for and for [7] The diffraction based factor of the system MTF will therefore scale according to and in turn according to (for the same light wavelength).

In considering the effect of sensor size, and its effect on the final image, the different magnification required to obtain the same size image for viewing must be accounted for, resulting in an additional scale factor of where is the relative crop factor, making the overall scale factor . Considering the three cases above:

For the 'same picture' conditions, same angle of view, subject distance and depth of field, then the F-numbers are in the ratio , so the scale factor for the diffraction MTF is 1, leading to the conclusion that the diffraction MTF at a given depth of field is independent of sensor size.

In both the 'same photometric exposure' and 'same lens' conditions, the F-number is not changed, and thus the spatial cutoff and resultant MTF on the sensor is unchanged, leaving the MTF in the viewed image to be scaled as the magnification, or inversely as the crop factor.

Sensor format and lens size

It might be expected that lenses appropriate for a range of sensor sizes could be produced by simply scaling the same designs in proportion to the crop factor.[8] Such an exercise would in theory produce a lens with the same F-number and angle of view, with a size proportional to the sensor crop factor. In practice, simple scaling of lens designs is not always achievable, due to factors such as the non-scalability of manufacturing tolerance, structural integrity of glass lenses of different sizes and available manufacturing techniques and costs. Moreover, to maintain the same absolute amount of information in an image (which can be measured as the space bandwidth product[9]) the lens for a smaller sensor requires a greater resolving power. The development of the 'Tessar' lens is discussed by Nasse,[10] and shows its transformation from an f/6.3 lens for plate cameras using the original three-group configuration through to an f/2.8 5.2 mm four-element optic with eight extremely aspheric surfaces, economically manufacturable because of its small size. Its performance is 'better than the best 35 mm lenses – but only for a very small image'.

In summary, as sensor size reduces, the accompanying lens designs will change, often quite radically, to take advantage of manufacturing techniques made available due to the reduced size. The functionality of such lenses can also take advantage of these, with extreme zoom ranges becoming possible. These lenses are often very large in relation to sensor size, but with a small sensor can be fitted into a compact package.

Sensor size and shading effects

Semiconductor image sensors can suffer from shading effects at large apertures and at the periphery of the image field, due to the geometry of the light cone projected from the exit pupil of the lens to a point, or pixel, on the sensor surface. The effects are discussed in detail by Catrysse and Wandell .[11] In the context of this discussion the most important result from the above is that to ensure a full transfer of light energy between two coupled optical systems such as the lens' exit pupil to a pixel's photoreceptor the geometrical extent (also known as etendue or light throughput) of the objective lens / pixel system must be smaller than or equal to the geometrical extent of the microlens / photoreceptor system. The geometrical extent of the objective lens / pixel system is given by

,

where wpixel is the width of the pixel and (f/#)objective is the f-number of the objective lens. The geometrical extent of the microlens / photoreceptor system is given by

,

where wphotoreceptor is the width of the photoreceptor and (f/#)microlens is the f-number of the microlens.

So to avoid shading,

, therefore

If wphotoreceptor / wpixel = ff, the linear fill factor of the lens, then the condition becomes

Thus if shading is to be avoided the f-number of the microlens must be smaller than the f-number of the taking lens by at least a factor equal to the linear fill factor of the pixel. The f-number of the microlens is determined ultimately by the width of the pixel and its height above the silicon, which determines its focal length. In turn, this is determined by the height of the metallisation layers, also known as the 'stack height'. For a given stack height, the f-number of the microlenses will increase as pixel size reduces, and thus the objective lens f-number at which shading occurs will tend to increase. This effect has been observed in practice, as recorded in the DxOmark article 'F-stop blues'[12]

In order to maintain pixel counts smaller sensors will tend to have smaller pixels, while at the same time smaller objective lens f-numbers are required to maximise the amount of light projected on the sensor. To combat the effect discussed above, smaller format pixels include engineering design features to allow the reduction in f-number of their microlenses. These may include simplified pixel designs which require less metallisation, 'light pipes' built within the pixel to bring its apparent surface closer to the microlens and 'back side illumination' in which the wafer is thinned to expose the rear of the photodetectors and the microlens layer is placed directly on that surface, rather than the front side with its wiring layers. The relative effectiveness of these stratagems is discussed by Aptina in some detail.[13]

Common image sensor formats

Sizes of the sensors used in most current digital cameras relative to a standard 35mm frame.

Medium-format digital sensors

The most common sensor size for medium-format digital cameras is approximately 48 mm × 36 mm (1.9 in × 1.4 in)[citation needed], due to the widespread use of Kodak's 22-megapixel KAF-22000 and 39-megapixel KAF-39000[14] CCDs in that format. Phase one offers the P65+ digital back with Dalsa's 53.9 mm × 40.4 mm (2.12 in × 1.59 in) sensor containing 60.5 megapixels[15] and Leica offers an "S-System" DSLR with a 45 mm × 30 mm (1.8 in × 1.2 in) sensor containing 37-megapixels.[16] In 2010, Pentax released the 40MP 645D medium format DSLR with a 44 mm × 33 mm (1.7 in × 1.3 in) sensor.[17]

Sensors equipping most DSLRs and mirrorless interchangeable-lens cameras

Some professional DSLRs use full-frame sensors, equal to the size of a frame of 35 mm film.

Most consumer-level DSLRs and MILCs/EVILs use relatively large sensors, either around the size of a frame of APS-C film, with a crop factor of 1.5-1.6; or 30% smaller than that, with a crop factor of 2.0 (this is the Four Thirds System, adopted by Olympus and Panasonic).

On September 2011, Nikon announced their new format CX, whose size is 1" (2.7 crop factor).[18] It has been adopted for the Nikon 1 camera system (Nikon J1 and V1 models). As of September 2011 there is only one MILC model equipped with a very small sensor, typical of compact cameras: it is the Pentax Q, equipped with a 1/2.3" sensor (5.62 crop factor). See Sensors equipping Compact digital cameras and camera-phones section below.

Many different terms are used in marketing to describe DSRL/MILC sensor formats, including the following:

When full-frame sensors were first introduced, production costs could exceed twenty times the cost of an APS-C sensor. Only twenty full-frame sensors can be produced on an 8 inches (20 cm) silicon wafer that would fit around 200 APS-C sensors, and there is a significant reduction in yield due to the large area for contaminants per component. Additionally, the full frame sensor originally required three separate exposures during the photolithography stage, which requires separate masks and quality control steps. The APS-H size was selected since it was then the largest that could be imaged with a single mask to help control production costs and manage yields.[19] Newer photolithography equipment now allows single-pass exposures for full-frame sensors, although other size-related production constraints remain much the same.

Due to the ever-changing constraints of semiconductor fabrication and processing, and because camera manufacturers often source sensors from third-party foundries, it is common for sensor dimensions to vary slightly within the same nominal format. For example, the Nikon D3 and D700 cameras' nominally full-frame sensors actually measure 36 × 23.9 mm, slightly smaller than a 36 × 24 mm frame of 35 mm film. As another example, the Pentax K200D's sensor (made by Sony) measures 23.5 × 15.7 mm, while the contemporaneous K20D's sensor (made by Samsung) measures 23.4 × 15.6 mm.

Most DSLR image sensor formats approximate the 3:2 aspect ratio of 35 mm film. Again, the Four Thirds System is a notable exception, with an aspect ratio of 4:3 as seen in most compact digital cameras (see below).

Sensors equipping compact digital cameras, mega-zoom (bridge) cameras and camera-phones

Most image sensors equipping compact cameras have an aspect ratio of 4:3. This matches the aspect ratio of the popular SVGA, XGA, and SXGA display resolutions at the time of the first digital cameras, allowing images to be displayed on usual monitors without cropping.

As of December 2010 most compact digital cameras used small 1/2.3" sensors(or even smaller: 1/2.33"). Such cameras include Canon Powershot SX230 IS, Fuji Finepix Z90 and Nikon Coolpix S9100. Some older digital cameras (mostly from 2005–2010) used a tiny 1/2.5" sensor: these include Panasonic Lumix DMC-FS62, Canon Powershot SX120 IS, Sony CyberShot DSC-S700, and Casio Exilim EX-Z80.

High-end compact cameras using sensors of nearly twice the area than sensors equipping common compacts include Canon PowerShot G12 (1/1.7") and Powershot S90/S95 (1/1.7"), Ricoh GR Digital IV (1/1.7"), Nikon Coolpix P7100 (1/1.7"), Samsung EX1 (1/1.7"), Panasonic DMC-LX5 (1/1.63") and Olympus XZ-1(1/1.63"). Fujifilm FinePix X-10 has a 2/3" sensor, the largest sensor on camera small enough to be labelled as compact (despite weighing 353 grams) until June 2012. That is until Sony announced DSC-RX-100, a real compact (weight: 213 grams) equipped with a 1" sensor (i.e. one only used on MILCs until then). Actually, Canon labels "compact camera" its PowerShot G1 X, equipped with a huge 1.5" sensor (i.e. a sensor larger than the 4/3" sensors equipping some compact DSLR). Nonetheless, weighing well over half a kilo (534 grams) G1 X is arguably a bridge camera rather than a compact.[citation needed]

As of 2012 most bridge cameras, including the Sony CyberShot DSC-HX100V and the Canon PowerShot SX40 HS, use a small 1/2.3" sensor (i.e. same size as those used in common compact cameras). The high-end bridge camera Fuji XS-1, though, is equipped with a much larger sensor (2/3" – twice the area of a 1/2.3" sensor: see table further on).

The sensors of camera phones are typically much smaller than those of typical compact cameras, allowing greater miniaturization of the electrical and optical components. Sensor sizes of around 1/6" are common in camera phones, webcams and digital camcorders. The Nokia N8's 1/1.83" sensor was the largest in a phone in late 2011. The upcoming Nokia 808 surpasses compact cameras with its 41 million pixels, 1/1.2" sensor.[20]

Table of sensor formats and sizes

Sensor formats of digital cameras are mostly expressed in the non-standardized "inch" system as approximately 1.5 times the length of the diagonal of the sensor. This goes back to the way image sizes of video cameras used until the late 1980s were expressed, referring to the outside diameter of the glass envelope of the video camera tube. David Pogue of The New York Times states that "the actual sensor size is much smaller than what the camera companies publish – about one-third smaller." For example, a camera advertising a 1/2.7" sensor does not have a sensor with a diagonal of 0.37"; instead, the diagonal is closer to 0.26".[21][22] Instead of "formats", these sensor sizes are often called types, as in "1/2-inch-type CCD."

Due to inch-based sensor formats being not standardized, their exact dimensions may vary, but those listed are typical.[22] The listed sensor areas span more than a factor of 1000 and are proportional to the maximum possible collection of light and image resolution (same lens speed, i.e., maximum aperture), but in practice are not directly proportional to image noise or resolution due to other limitations. See comparisons.[23][24] (Film format sizes are included for comparison).

Type Diagonal (mm) Width (mm) Height (mm) Area (mm2) Stops (Area) Crop factor[25]
1/10" 1.60 1.28 0.96 1.23 -9.51 27.04
1/8" 2.00 1.60 1.20 1.92 -8.81 21.65
1/6" 3.00 2.40 1.80 4.32 -7.64 14.14
1/4" 4.00 3.20 2.40 7.68 -6.81 10.81
1/3.6" 5.00 4.00 3.00 12.0 -6.16 8.65
1/3.2" (iPhone 5)[26] 5.68 4.54 3.42 15.50 -5.80 7.61
Standard 8mm Film Frame 5.94 4.8 3.5 16.8 -5.73 7.28
1/3" 6.00 4.80 3.60 17.30 -5.64 7.21
1/2.7" 6.72 5.37 4.04 21.70 -5.31 6.44
Super 8mm Film Frame 7.04 5.79 4.01 23.22 -5.24 6.15
1/2.5" 7.18 5.76 4.29 24.70 -5.12 6.02
1/2.3" (Pentax Q) 7.66 6.17 4.55 28.50 -4.92 5.64
1/2" 8.00 6.40 4.80 30.70 -4.81 5.41
1/1.8" (Canon A80) 8.93 7.18 5.32 38.20 -4.50 4.84
1/1.7" 9.50 7.60 5.70 43.30 -4.32 4.55
1/1.6" 10.07 8.08 6.01 48.56 -4.15 4.30
2/3" (Nokia Lumia 1020) 11.00 8.80 6.60 58.10 -3.89 3.93
Standard 16mm Film Frame 12.7 10.26 7.49 76.85 -3.49 3.41
1/1.2" (Nokia 808 PureView) 13.33 10.67 8.00 85.33 -3.34 3.24
Blackmagic Pocket Cinema Camera 14.32 12.48 7.02 87.6 -3.30 3.02
Super 16mm Film Frame 14.54 12.52 7.41 92.80 -3.22 2.97
Nikon CX and Sony RX100 15.86 13.20 8.80 116 -2.90 2.72
1" 16.00 12.80 9.60 123 -2.81 2.70
Blackmagic Cinema Camera EF 18.13 15.81 8.88 140 -2.62 2.38
Four Thirds, Micro Four Thirds ("4/3", "m4/3") 21.60 17.30 13 225 -1.94 2.00
1.5" 23.36 18.70 14.00 262 -1.72 1.85
Blackmagic Production Camera 4K 24.23 21.12 11.88 251 -1.78 1.79
original Sigma Foveon X3 24.90 20.70 13.80 286 -1.60 1.74
Canon EF-S, APS-C 26.70 22.20 14.80 329 -1.39 1.62
Standard 35mm Film Frame 27.20 22.0 16.0 352 -1.34 1.59
APS-C (Nikon DX, Pentax K, Samsung NX, Sony α DT) 28.2 - 28.4 23.6 - 23.7 15.60 368 - 370 -1.23 1.52 - 1.54
Super 35mm Film Frame 31.11 24.89 18.66 464 -0.95 1.39
Canon APS-H 33.50 27.90 18.60 519 -0.73 1.29
35mm full-frame, (Nikon FX, Sony α, Canon EF) 43.2 - 43.3 36 23.9 - 24.3 860 - 864 0 1.0
Leica S 54 45 30 1350 +0.64 0.80
Pentax 645D 55 44 33 1452 +0.75 0.78
Standard 65mm Film Frame 57.30 52.48 23.01 1208 +0.81 0.76
Kodak KAF 39000 CCD[27] 61.30 49 36.80 1803 +1.06 0.71
Leaf AFi 10 66.57 56 36 2016 +1.22 0.65
Medium Format (Hasselblad H5D-60)[28] 67.08 53.7 40.2 2159 +1.26 0.65
Phase One P 65+, IQ160, IQ180 67.40 53.90 40.40 2178 +1.33 0.64
IMAX Film Frame 87.91 70.41 52.63 3706 +2.05 0.49

Bridging the gap in sensor sizes

This semi-logarithmic graph shows the large gap which – for a long time and until Sep. 2011 – existed between compact digital and DSLR camera sensor sizes. The x axis is a discrete set of sensor format sizes used in digital cameras, not a linear measurement axis.

From 2005 there was an increasing interest in producing medium-sized cameras with large sensors but without the moving mirror systems, and consequently the bulk, typical of DSLR camera bodies.

Manufacturers gradually responded to this interest, which led to a new type: the mirrorless interchangeable-lens camera. An early example is the Epson R-D1, a digital rangefinder using the Leica M mount. Other companies followed suit, by introducing similar cameras that focus electronically rather than manually (such as Olympus, with its PEN series; Panasonic, with its G and GF series; Sony, with its Nex series; Samsung, with its NX series). MILC cameras might overall look like compact digital ones, with at least two notable differences: a sensor in most cases of the size found in digital SLRs, and interchangeable lenses. The latter feature, though, was incorporated in at least one small-sensor camera as well (Pentax Q, announced in June 2011).

Nonetheless, until 2011 there still remained a large gap in sensor sizes between digital compact cameras on the one hand and DSLRs/MILCs on the other. Compact cameras were all equipped with sensors smaller than 1/1.6" (48.5 mm2), whereas 4/3" (225 mm2) was the smallest sensor to be found on DSLRs/MILCs. Noticeable exceptions – for a few years – had been Olympus E-10 and E-20 (large, semi-professional hybrid cameras announced in the early 2000s and equipped with a 2/3" sensor). The main reason for such size-gap was portability: large sensors require bulky lenses (that's why MILC cameras with large sensors often show a marked disproportion between their tiny bodies and their large lens systems, zoom objectives especially).

That sensor-size gap was bridged by camera models announced in September 2011: on the compact side of the gap, a very large (for a compact) 2/3" (58.1 mm2) sensor equipped the high-end Fuji X10 compact. Almost at the same time, on the DSLR/MILC side of the divide, Nikon announced the Nikon 1 system, built around a new sensor format they named 'CX' (13.2mm × 8.8mm, roughly 1" in the inch system). Finally, a sensor of the same size (1") has been adopted, in 2012, by Sony, for its RX-100 compact camera (weight: gr. 213). Though, less compact than the RX-100, Canon's G1X with its 1.5" sensor, Nikon's Coolpix A with its APS-C and Sony's RX1 with its Full Frame sensor, further pushed the limits of sensor size in "compact" cameras.

With such format additions – the 1" sensors especially – and their adoption to equip compact-cameras, the crop-factor difference previously existing between the largest compact camera sensors and the smallest MILC sensors has been eliminated.

See also

Notes and references

  1. ^ a b Fellers, Thomas J. "CCD Noise Sources and Signal-to-Noise Ratio". Hamamatsu Corporation. Retrieved 17 December 2011. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  2. ^ Aptina Imaging Corporation. "Leveraging Dynamic Response Pixel Technology to Optimize Inter-scene Dynamic Range" (PDF). Aptina Imaging Corporation. Retrieved 17 December 2011.
  3. ^ Loukianova, Natalia V. (2003). "Leakage Current Modeling of Test Structures for Characterization of Dark Current in CMOS Image Sensors" (PDF). IEEE Transactions on Electron Devices. 50 (1): 77–83. doi:10.1109/TED.2002.807249. Retrieved 17 December 2011. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help); Unknown parameter |month= ignored (help)
  4. ^ "Dark Count". Apogee Imaging Systems. Retrieved 17 December 2011.
  5. ^ Kavusi, Sam (2004). "Quantitative Study of High Dynamic Range Image Sensor Architectures" (PDF). Proc. of SPIE-IS&T Electronic Imaging. 5301: 264–275. Retrieved 17 December 2011. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  6. ^ Osuna, Rubén & García, Efraín. "Do Sensors "Outresolve" Lenses?". The Luminous Landscape. Retrieved 21 December 2011.{{cite web}}: CS1 maint: multiple names: authors list (link)
  7. ^ Boreman, Glenn D. (2001). Modulation Transfer Function in Optical and Electro-Optical Systems. SPIE Press. p. 120. ISBN 978-0-8194-4143-0.
  8. ^ Ozaktas, Haldun M (1994). "Scaling of diffractive and refractive lenses for optical computing and interconnections". Applied Optics. 33 (17): 3782–3789. doi:10.1364/AO.33.003782. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  9. ^ Goodman, Joseph W (2005). Introduction to Fourier optics, 3rd edition. Greenwood Village, CO: Roberts and Company. p. 26. ISBN 0-9747077-2-4.
  10. ^ Nasse, H. H. "From the Series of Articles on Lens Names: Tessar" (PDF). Carl Zeiss AG. Retrieved 19 December 2011.
  11. ^ Catrysse, Peter B. (2005). "Roadmap for CMOS image sensors: Moore meets Planck and Sommerfeld" (PDF). Proceedings of the International Society for Optical Engineering. 5678 (1). doi:10.1117/12.592483. Retrieved 29 January 2012. {{cite journal}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  12. ^ DxOmark. "F-stop blues". DxOMark Insights. Retrieved 29 January 2012.
  13. ^ Aptina Imaging Corporation. "An Objective Look at FSI and BSI" (PDF). Aptina Technology White Paper. Retrieved 29 January 2012.
  14. ^ "Kodak Announces Highest Resolution Image Sensors for Professional Photography" (Press release). Kodak. 2005-10-20.[dead link]
  15. ^ "The Phase One P+ Product Range". PHASE ONE. Retrieved 2010-06-07.
  16. ^ "Leica S2 with 56% larger sensor than full frame" (Press release). Leica. 2008-09-23. Retrieved 2010-06-07.
  17. ^ "Pentax unveils 40MP 645D medium format DSLR" (Press release). Pentax. 2010-03-10. Retrieved 2010-12-21.
  18. ^ Nikon unveils J1 small sensor mirrorless camera as part of Nikon 1 system at dpreview.com
  19. ^ "Canon's Full Frame CMOS Sensors" (PDF) (Press release). 2006. Retrieved 2013-05-02.
  20. ^ http://europe.nokia.com/PRODUCT_METADATA_0/Products/Phones/8000-series/808/Nokia808PureView_Whitepaper.pdf Nokia PureView imaging technology whitepaper
  21. ^ Pogue, David (2010-12-22). "Small Cameras With Big Sensors, and How to Compare Them". The New York Times.
  22. ^ a b Bockaert, Vincent. "Sensor Sizes: Camera System: Glossary: Learn". Digital Photography Review. Retrieved 2012-04-09.
  23. ^ Camera Sensor Ratings DxOMark
  24. ^ Imaging-resource: Sample images Comparometer Imaging-resource
  25. ^ Defined here as the ratio of the diagonal of a full 35 frame to that of the sensor format, that is CF=diag35mm / diagsensor.
  26. ^ Camera sensor size: Why does it matter and exactly how big are they?, March 21, 2013, retrieved 2013-06-19 {{citation}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  27. ^ KODAK KAF-39000 IMAGE SENSOR, DEVICE PERFORMANCE SPECIFICATION (PDF), April 21, 2010 {{citation}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)[dead link]
  28. ^ Hasselblad H5D-60 Medium Format DSLR Camera, retrieved 2013-06-19 {{citation}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)