Massive Online Analysis: Difference between revisions
No edit summary |
Add algorithms |
||
Line 12: | Line 12: | ||
}} |
}} |
||
'''MOA (Massive Online Analysis)''' |
'''MOA (Massive Online Analysis)'''<ref name="bifet2010moa">{{cite journal |
||
|last1=Bifet |first1=Albert |
|last1=Bifet |first1=Albert |
||
|last2=Holmes |first2=Geoff |
|last2=Holmes |first2=Geoff |
||
|last3=Kirkby |first3=Richard |
|last3=Kirkby |first3=Richard |
||
|last4=Pfahringer |first4=Bernhard |
|last4=Pfahringer |first4=Bernhard |
||
|title= |
|title=MOA: Massive online analysis |
||
|journal=The Journal of Machine Learning Research |
|journal=The Journal of Machine Learning Research |
||
|volume=99 |
|volume=99 |
||
|pages=1601–1604|year=2010 |
|pages=1601–1604|year=2010 |
||
}}</ref>. It's written in [[Java (programming language)|Java]] and developed at the [[University of Waikato]], [[New Zealand]]. |
}}</ref> is a free open-source software specific for [[Data stream mining]] with [[Concept drift]]. It's written in [[Java (programming language)|Java]] and developed at the [[University of Waikato]], [[New Zealand]]. |
||
==Description== |
==Description== |
||
MOA is an open-source framework software that allows to build and run experiments |
|||
MOA contains several collections of machine learning algorithms ( [[Statistical classification|classification]], [[Regression analysis|regression]], [[data clustering|clustering]], outlier detection and recommender systems). These algorithms are designed for large scale machine learning, dealing with concept drift, and big data streams in real time. |
|||
of machine learning or data mining on evolving data streams. It includes a set of learners and stream generators that can be used from the Graphical User Interface (GUI), the command-line, and the Java API. |
|||
MOA contains several collections of machine learning algorithms: |
|||
* [[Statistical classification|Classification]] |
|||
** Bayesian classifiers |
|||
*** Naive Bayes |
|||
*** Naive Bayes Multinomial |
|||
** Decision trees classifiers |
|||
*** Decision Stump |
|||
*** Hoeffding Tree |
|||
*** Hoeffding Option Tree |
|||
*** Hoeffding Adaptive Tree |
|||
** Meta classifiers |
|||
*** Bagging |
|||
*** Boosting |
|||
*** Bagging using ADWIN |
|||
*** Bagging using Adaptive-Size Hoeffding Trees. |
|||
*** Perceptron Stacking of Restricted Hoeffding Trees |
|||
*** Leveraging Bagging |
|||
*** Online Accuracy Updated Ensemble |
|||
** Function classifiers |
|||
*** Perceptron |
|||
*** [[Stochastic gradient descent]] (SGD) |
|||
*** Pegasos |
|||
** Drift classifiers |
|||
** Multi-label classifiers<ref name="ReadBifet2012">{{cite journal|last1=Read|first1=Jesse|last2=Bifet|first2=Albert|last3=Holmes|first3=Geoff|last4=Pfahringer|first4=Bernhard|title=Scalable and efficient multi-label classification for evolving data streams|journal=Machine Learning|volume=88|issue=1-2|year=2012|pages=243–272|issn=0885-6125|doi=10.1007/s10994-012-5279-6}}</ref> |
|||
** [[Active_learning_(machine_learning)|Active learning]] classifiers <ref name="ZliobaiteBifet2014">{{cite journal|last1=Zliobaite|first1=Indre|last2=Bifet|first2=Albert|last3=Pfahringer|first3=Bernhard|last4=Holmes|first4=Geoffrey|title=Active Learning With Drifting Streaming Data|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=25|issue=1|year=2014|pages=27–39|issn=2162-237X|doi=10.1109/TNNLS.2012.2236570}}</ref> |
|||
* [[Regression analysis|Regression]] |
|||
** FIMTDD<ref name="IkonomovskaGama2010">{{cite journal|last1=Ikonomovska|first1=Elena|last2=Gama|first2=João|last3=Džeroski|first3=Sašo|title=Learning model trees from evolving data streams|journal=Data Mining and Knowledge Discovery|volume=23|issue=1|year=2010|pages=128–168|issn=1384-5810|doi=10.1007/s10618-010-0201-y}}</ref> |
|||
** AMRules<ref name="AlmeidaFerreira2013">{{cite journal|last1=Almeida|first1=Ezilda|last2=Ferreira|first2=Carlos|last3=Gama|first3=João|title=Adaptive Model Rules from Data Streams|volume=8188|year=2013|pages=480–492|issn=0302-9743|doi=10.1007/978-3-642-40988-2_31}}</ref> |
|||
* [[data clustering|Clustering]]<ref name="KranenKremer2010">{{cite journal|last1=Kranen|first1=Philipp|last2=Kremer|first2=Hardy|last3=Jansen|first3=Timm|last4=Seidl|first4=Thomas|last5=Bifet|first5=Albert|last6=Holmes|first6=Geoff|last7=Pfahringer|first7=Bernhard|title=Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA|year=2010|pages=1400–1403|doi=10.1109/ICDMW.2010.17}}</ref> |
|||
** StreamKM++ |
|||
** CluStream |
|||
** ClusTree |
|||
** D-Stream |
|||
** CobWeb. |
|||
* Outlier detection<ref name="GeorgiadisKontaki2013">{{cite journal|last1=Georgiadis|first1=Dimitrios|last2=Kontaki|first2=Maria|last3=Gounaris|first3=Anastasios|last4=Papadopoulos|first4=Apostolos N.|last5=Tsichlas|first5=Kostas|last6=Manolopoulos|first6=Yannis|title=Continuous outlier detection in data streams|year=2013|pages=1061|doi=10.1145/2463676.2463691}}</ref> |
|||
** STORM |
|||
** Abstract-C |
|||
** COD |
|||
** MCOD |
|||
** AnyOut<ref name="AssentKranen2012">{{cite journal|last1=Assent|first1=Ira|last2=Kranen|first2=Philipp|last3=Baldauf|first3=Corinna|last4=Seidl|first4=Thomas|title=AnyOut: Anytime Outlier Detection on Streaming Data|volume=7238|year=2012|pages=228–242|issn=0302-9743|doi=10.1007/978-3-642-29038-1_18}}</ref> |
|||
* [[Recommender system|Recommender systems]] |
|||
** BRISMFPredictor |
|||
* Frequent pattern mining |
|||
** Itemsets<ref name="Quadrana2013">{{cite journal|last1=Quadrana|first1=Massimo|last2=Bifet|first2=Albert|last3=Gavaldà|first3=Ricard|title=An Efficient Closed Frequent Itemset Miner for the MOA Stream Mining System|year=2013|pages=203|doi=10.3233/978-1-61499-320-9-203}}</ref> |
|||
** Graphs<ref name="BifetHolmes2011">{{cite journal|last1=Bifet|first1=Albert|last2=Holmes|first2=Geoff|last3=Pfahringer|first3=Bernhard|last4=Gavaldà|first4=Ricard|title=Mining frequent closed graphs on evolving data streams|year=2011|pages=591|doi=10.1145/2020408.2020501}}</ref> |
|||
* Change detection algorithms<ref name="BifetRead2013">{{cite journal|last1=Bifet|first1=Albert|last2=Read|first2=Jesse|last3=Pfahringer|first3=Bernhard|last4=Holmes|first4=Geoff|last5=Žliobaitė|first5=Indrė|title=CD-MOA: Change Detection Framework for Massive Online Analysis|volume=8207|year=2013|pages=92–103|issn=0302-9743|doi=10.1007/978-3-642-41398-8_9}}</ref> |
|||
These algorithms are designed for large scale machine learning, dealing with concept drift, and big data streams in real time. |
|||
MOA supports bi-directional interaction with [[Weka (machine learning)]]. MOA is [[free software]] released under the [[GNU GPL]]. |
MOA supports bi-directional interaction with [[Weka (machine learning)]]. MOA is [[free software]] released under the [[GNU GPL]]. |
||
==See also== |
|||
{{Portal|Free software}} |
|||
* [https://adams.cms.waikato.ac.nz/ ADAMS Workflow]: Workflow engine for MOA and [[Weka (machine learning)]] |
|||
* [http://www-ai.cs.uni-dortmund.de/SOFTWARE/streams/ Streams]: Flexible module environment for the design and execution of data stream experiments |
|||
* [[Weka (machine learning)]] |
|||
* [[Vowpal Wabbit]] |
|||
* [[List of numerical analysis software]] |
|||
== References == |
== References == |
Revision as of 15:42, 26 February 2014
The topic of this article may not meet Wikipedia's general notability guideline. (May 2013) |
Developer(s) | University of Waikato |
---|---|
Stable release | 2013.11
/ 2013/11/01 |
Repository | |
Operating system | Cross-platform |
Type | Machine Learning |
License | GNU General Public License |
Website | http://moa.cms.waikato.ac.nz/ |
MOA (Massive Online Analysis)[1] is a free open-source software specific for Data stream mining with Concept drift. It's written in Java and developed at the University of Waikato, New Zealand.
Description
MOA is an open-source framework software that allows to build and run experiments of machine learning or data mining on evolving data streams. It includes a set of learners and stream generators that can be used from the Graphical User Interface (GUI), the command-line, and the Java API. MOA contains several collections of machine learning algorithms:
- Classification
- Bayesian classifiers
- Naive Bayes
- Naive Bayes Multinomial
- Decision trees classifiers
- Decision Stump
- Hoeffding Tree
- Hoeffding Option Tree
- Hoeffding Adaptive Tree
- Meta classifiers
- Bagging
- Boosting
- Bagging using ADWIN
- Bagging using Adaptive-Size Hoeffding Trees.
- Perceptron Stacking of Restricted Hoeffding Trees
- Leveraging Bagging
- Online Accuracy Updated Ensemble
- Function classifiers
- Perceptron
- Stochastic gradient descent (SGD)
- Pegasos
- Drift classifiers
- Multi-label classifiers[2]
- Active learning classifiers [3]
- Bayesian classifiers
- Regression
- Clustering[6]
- StreamKM++
- CluStream
- ClusTree
- D-Stream
- CobWeb.
- Outlier detection[7]
- STORM
- Abstract-C
- COD
- MCOD
- AnyOut[8]
- Recommender systems
- BRISMFPredictor
- Frequent pattern mining
- Change detection algorithms[11]
These algorithms are designed for large scale machine learning, dealing with concept drift, and big data streams in real time.
MOA supports bi-directional interaction with Weka (machine learning). MOA is free software released under the GNU GPL.
See also
- ADAMS Workflow: Workflow engine for MOA and Weka (machine learning)
- Streams: Flexible module environment for the design and execution of data stream experiments
- Weka (machine learning)
- Vowpal Wabbit
- List of numerical analysis software
References
- ^ Bifet, Albert; Holmes, Geoff; Kirkby, Richard; Pfahringer, Bernhard (2010). "MOA: Massive online analysis". The Journal of Machine Learning Research. 99: 1601–1604.
- ^ Read, Jesse; Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard (2012). "Scalable and efficient multi-label classification for evolving data streams". Machine Learning. 88 (1–2): 243–272. doi:10.1007/s10994-012-5279-6. ISSN 0885-6125.
- ^ Zliobaite, Indre; Bifet, Albert; Pfahringer, Bernhard; Holmes, Geoffrey (2014). "Active Learning With Drifting Streaming Data". IEEE Transactions on Neural Networks and Learning Systems. 25 (1): 27–39. doi:10.1109/TNNLS.2012.2236570. ISSN 2162-237X.
- ^ Ikonomovska, Elena; Gama, João; Džeroski, Sašo (2010). "Learning model trees from evolving data streams". Data Mining and Knowledge Discovery. 23 (1): 128–168. doi:10.1007/s10618-010-0201-y. ISSN 1384-5810.
- ^ Almeida, Ezilda; Ferreira, Carlos; Gama, João (2013). "Adaptive Model Rules from Data Streams". 8188: 480–492. doi:10.1007/978-3-642-40988-2_31. ISSN 0302-9743.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Kranen, Philipp; Kremer, Hardy; Jansen, Timm; Seidl, Thomas; Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard (2010). "Clustering Performance on Evolving Data Streams: Assessing Algorithms and Evaluation Measures within MOA": 1400–1403. doi:10.1109/ICDMW.2010.17.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Georgiadis, Dimitrios; Kontaki, Maria; Gounaris, Anastasios; Papadopoulos, Apostolos N.; Tsichlas, Kostas; Manolopoulos, Yannis (2013). "Continuous outlier detection in data streams": 1061. doi:10.1145/2463676.2463691.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Assent, Ira; Kranen, Philipp; Baldauf, Corinna; Seidl, Thomas (2012). "AnyOut: Anytime Outlier Detection on Streaming Data". 7238: 228–242. doi:10.1007/978-3-642-29038-1_18. ISSN 0302-9743.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Quadrana, Massimo; Bifet, Albert; Gavaldà, Ricard (2013). "An Efficient Closed Frequent Itemset Miner for the MOA Stream Mining System": 203. doi:10.3233/978-1-61499-320-9-203.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Bifet, Albert; Holmes, Geoff; Pfahringer, Bernhard; Gavaldà, Ricard (2011). "Mining frequent closed graphs on evolving data streams": 591. doi:10.1145/2020408.2020501.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Bifet, Albert; Read, Jesse; Pfahringer, Bernhard; Holmes, Geoff; Žliobaitė, Indrė (2013). "CD-MOA: Change Detection Framework for Massive Online Analysis". 8207: 92–103. doi:10.1007/978-3-642-41398-8_9. ISSN 0302-9743.
{{cite journal}}
: Cite journal requires|journal=
(help)