Jump to content

Continuity correction: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Paragraph 2 included an equation for the variance of the binomial distribution. The variance was improperly described a s n(1-p) I amended it to read np(1-p) as it should be.
Tag: gettingstarted edit
create lede introduction
Line 1: Line 1:
In [[probability theory]], a '''continuity correction''' is an adjustment that is made when a discrete [[Probability distribution|distribution]] is approximated by a continuous distribution.
In [[probability theory]], if a [[random variable]] ''X'' has a [[binomial distribution]] with parameters ''n'' and ''p'', i.e., ''X'' is distributed as the number of "successes" in ''n'' independent [[Bernoulli trial]]s with probability ''p'' of success on each trial, then

==Examples==

===Binomial===

If a [[random variable]] ''X'' has a [[binomial distribution]] with parameters ''n'' and ''p'', i.e., ''X'' is distributed as the number of "successes" in ''n'' independent [[Bernoulli trial]]s with probability ''p'' of success on each trial, then


:<math>P(X\leq x) = P(X<x+1)</math>
:<math>P(X\leq x) = P(X<x+1)</math>
Line 7: Line 13:
:<math>P(Y\leq x+1/2)</math>
:<math>P(Y\leq x+1/2)</math>


where ''Y'' is a [[normal distribution|normally distributed]] random variable with the same [[expected value]] and the same [[variance]] as ''X'', i.e., E(''Y'') = ''np'' and var(''Y'') = ''np''(1 &minus; ''p''). This addition of 1/2 to ''x'' is a '''continuity correction'''.
where ''Y'' is a [[normal distribution|normally distributed]] random variable with the same [[expected value]] and the same [[variance]] as ''X'', i.e., E(''Y'') = ''np'' and var(''Y'') = ''np''(1 &minus; ''p''). This addition of 1/2 to ''x'' is a continuity correction.

===Poisson===


A continuity correction can also be applied when other discrete distributions supported on the integers are approximated by the normal distribution. For example, if ''X'' has a [[Poisson distribution]] with expected value λ then the variance of ''X'' is also λ, and
A continuity correction can also be applied when other discrete distributions supported on the integers are approximated by the normal distribution. For example, if ''X'' has a [[Poisson distribution]] with expected value λ then the variance of ''X'' is also λ, and

Revision as of 23:28, 29 March 2015

In probability theory, a continuity correction is an adjustment that is made when a discrete distribution is approximated by a continuous distribution.

Examples

Binomial

If a random variable X has a binomial distribution with parameters n and p, i.e., X is distributed as the number of "successes" in n independent Bernoulli trials with probability p of success on each trial, then

for any x ∈ {0, 1, 2, ... n}. If np and np(1 − p) are large (sometimes taken to mean ≥ 5), then the probability above is fairly well approximated by

where Y is a normally distributed random variable with the same expected value and the same variance as X, i.e., E(Y) = np and var(Y) = np(1 − p). This addition of 1/2 to x is a continuity correction.

Poisson

A continuity correction can also be applied when other discrete distributions supported on the integers are approximated by the normal distribution. For example, if X has a Poisson distribution with expected value λ then the variance of X is also λ, and

if Y is normally distributed with expectation and variance both λ.

Applications

Before the ready availability of statistical software having the ability to evaluate probability distribution functions accurately, continuity corrections played an important role in the practical application of statistical tests in which the test statistic has a discrete distribution: it was a special importance for manual calculations. A particular example of this is the binomial test, involving the binomial distribution, as in checking whether a coin is fair. Where extreme accuracy is not necessary, computer calculations for some ranges of parameters may still rely on using continuity corrections to improve accuracy while retaining simplicity.

See also

References

  • Devore, Jay L., Probability and Statistics for Engineering and the Sciences, Fourth Edition, Duxbury Press, 1995.
  • Feller, W., On the normal approximation to the binomial distribution, The Annals of Mathematical Statistics, Vol. 16 No. 4, Page 319-329, 1945.