2019 in archosaur paleontology: Difference between revisions
Tags: Mobile edit Mobile web edit |
Tisquesusa (talk | contribs) |
||
Line 194: | Line 194: | ||
| |
| |
||
Gen. et sp. nov |
Gen. et sp. nov |
||
| |
|||
| |
| |
||
Valid |
Valid |
Revision as of 23:06, 4 February 2019
| |||
---|---|---|---|
+... |
This article records new taxa of fossil archosaurs of every kind that are scheduled described during the year 2019, as well as other significant discoveries and events related to paleontology of archosaurs that are scheduled to occur in the year 2019.
General research
- An archosaur trackway consisting of 10 successive pes imprints will be described from the Upper Triassic Irohalene Member of the Timezgadiouine Formation (Morocco) by Zouheir et al. (2019), supporting a cosmopolitan distribution of pentadactyl but functionally tridactyl chirotheres (Parachirotherium) and grallatorids across the Ladinian-Carnian boundary, and documenting the occurrence of very large Eubrontes trackmakers in the early Carnian.[1]
- A study on assemblages of nesting ring-billed gulls, California gulls, American white pelicans and double-crested cormorants at Bowdoin National Wildlife Refuge (Montana, United States), evaluating their utility as taphonomic models for interpreting nesting sites of fossils archosaurs, will be published by Ferguson, Varricchio & Ferguson (2019).[2]
- A study on size and shape differences between brains and endocasts of extant American alligator and domestic chicken, and on its implications for inferring whether endocasts are a reliable proxy for brain morphology in archosaurs in general, will be published by Watanabe et al. (2019).[3]
Pseudosuchians
Research
- A study on the bone histology of Coahomasuchus chathamensis, and on its implications for inferring ontogeny and growth strategy of this species, will be published by Hoffman, Heckert & Zanno (2019).[4]
- A study on the anatomy of the best-preserved skeleton of Prestosuchus chiniquensis, as well as on the phylogenetic relationships of this species, will be published by Roberto-Da-Silva et al. (2019).[5]
- Description of the anatomy of the skull of a new specimen of Prestosuchus chiniquensis from the Dinodontosaurus Assemblage Zone of the Pinheiros-Chiniquá Sequence, Santa Maria Super sequence (Brazil) is published by Mastrantonio et al. (2019), who also present the first description of a rauisuchian cranial endocast.[6]
- A study on habitat shifts during the evolutionary history of Crocodylomorpha is published by Wilberg, Turner & Brochu (2019).[7]
- A study on the quality of the fossil record of non‐marine crocodylomorphs is published by Mannion et al. (2019).[8]
- New fossil material (an isolated left dentary) of Orthosuchus stormbergi will be described from the Upper Elliot Formation (South Africa) by Dollman, Viglietti & Choiniere (2019), who also examine the stratigraphic positions of all valid crocodylomorph specimens from the main Karoo Basin.[9]
- Teleosaurid and metriorhynchid teeth will be described from, respectively, the Middle Jurassic (Aalenian) and Upper Jurassic (Tithonian) of Slovakia by Čerňanský et al. (2019), representing the first record of members of both families from the country.[10]
- Description of new fossil material of Pepesuchus from the Upper Cretaceous Adamantina Formation (Brazil) and a study on the phylogenetic relationships of this taxon is published by Geroto & Bertini (2019).[11]
- Partial dyrosaurid skeleton discovered in the 1930s in Paleocene (Danian) strata along the Atlantic coast of Senegal will be described by Martin, Sarr & Hautier (2019).[12]
- Revision of the large-sized neosuchians Kansajsuchus and "Turanosuchus" from the Late Cretaceous of Central Asia is published by Kuzmin et al. (2019), who interpret Kansajsuchus as a member of Paralligatoridae, and consider Turanosuchus aralensis to be a member of the genus Kansajsuchus belonging or related to the species K. extensus.[13]
- A study on the inner cavities of the skull of the holotype specimen of Lohuecosuchus megadontos is published by Serrano-Martínez et al. (2019).[14]
- New crocodylian fossils, documenting the presence of four previously unrecognised alligatoroids, are described from the Lower Miocene Castillo Formation (Venezuela) by Solórzano et al. (2019).[15]
- Redescription of the holotype specimen of Mourasuchus arendsi from the Urumaco Formation of Venezuela will be published by Cidade et al. (2019).[16]
- A study on the histology of long bones of extant yacare caiman and fossil caimans from the Upper Miocene–Pliocene Solimões Formation (Brazil) will be published by Andrade et al. (2019).[17]
- Fossils of a specimen of Asiatosuchus depressifrons from the late Paleocene of Mont de Berru (France), representing the oldest European crocodyloid remains reported so far, will be described by Delfino et al. (2019).[18]
- A review of the taxonomic diversity of the crocodiles from the early Pliocene of Kanapoi (Kenya) will be published by Brochu (2019).[19]
- Evidence of gavialine‐specific atavistic characters in the skeletons of fossil tomistomines Penghusuchus pani and Toyotamaphimeia machikanensis is presented by Iijima & Kobayashi (2019).[20]
- A revision of members of the genus Gavialis described on the basis of fossils from the Sivalik Hills of India and Pakistan will be published by Martin (2019).[21]
- A review of the fossil crocodylomorph fauna of the Cenozoic of South America is published by Cidade, Fortier & Hsiou (2019).[22]
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Souza-Filho et al. |
Late Miocene |
A caiman. Genus includes new species A. pachytemporalis. |
||||
Gen. et sp. nov |
Valid |
Coria et al. |
A peirosaurid crocodyliform. Genus includes new species B. neuquenianus. |
|||||
Gen. et sp. nov |
Valid |
Li, Wu & Rufolo |
A member of Crocodyloidea. Genus includes new species J. nankangensis. |
Non-avian dinosaurs
Research
- A study evaluating the impact of new fossil discoveries and changing phylogenetic hypotheses on biogeographical scenarios for dinosaur origins will be published by Marsola et al. (2019).[26]
- A study on the chronostratigraphic position of the uppermost Cretaceous dinosaur localities from south-western Europe, and on their implications for inferring the course of the Maastrichtian dinosaur turnover, is published by Fondevilla et al. (2019).[27]
- A diverse assemblage of dinosaur footprints is described from the Lower Cretaceous (Berriasian-Valanginian) Ashdown Formation of East Sussex, southern England by Shillito & Davies (2019).[28]
- Theropod footprints with anatomical features which don't match any known Gondwanan theropod with preserved pedal bones are described from the Albian Lagarcito Formation (Argentina) by Melchor et al. (2019), who name a new ichnotaxon Picunichnus quijadaensis Melchor.[29]
- A study on the ichnotaxonomy of theropod footprints from the Lower Cretaceous Kitadani Formation (Japan) is published by Tsukiji et al. (2019).[30]
- A study on putative theropod footprints assigned to the ichnogenus Eubrontes is published by Weems (2019), who argues that bipedal sauropodomorphs were more likely trackmakers of these tracks.[31]
- A study on sauropod tracks from the Jurassic Tafaytour tracksites (Argana Basin, Morocco), and on their implications for inferring forelimb posture in sauropod dinosaurs, is published by Lallensack et al. (2019).[32]
- Description of dinosaur egg fossils from the late Early Cretaceous Chaochuan Formation (Zhejiang, China) is published by Zhang et al. (2019), who name a new ootaxon Multifissoolithus chianensis.[33]
- A study on the phylogenetic placement of Chilesaurus diegosuarezi and its implications for the phylogenetic relationships of major dinosaur groups will be published by Müller & Dias-da-Silva (2019).[34]
- New spinosaurid specimens are described from the Kem Kem Beds (Morocco) by Arden et al. (2019), who interpret these specimens as providing evidence of aquatic adaptations in the skulls of spinosaurids, and name a new clade Spinosaurini.[35]
- New fossil material of juvenile spinosaurids is described from the Kem Kem Beds by Lakin & Longrich (2019).[36]
- New theropod fossils, including partial tail vertebra of a member of Megaraptora and an association of tail vertebrae and pelvic elements displaying a combination of characteristics that are present in megaraptorid and carcharodontosaurid theropods, are described from the early Late Cretaceous Griman Creek Formation at Lightning Ridge, New South Wales (Australia) by Brougham, Smith & Bell (2019).[37]
- Partial postcranial skeleton of a probable carcharodontosaurian theropod is described from the Upper Jurassic (Tithonian) Freixial Formation (Portugal) by Malafaia et al. (2019).[38]
- Description of the anatomy of the axial skeleton of Concavenator corcovatus is published by Cuesta, Ortega & Sanz (2019).[39]
- The first neurocranial and paleoneurological description of Dilong paradoxus, comparing it with large tyrannosaurids, will be published by Kundrát et al. (2019).[40]
- A study on the tooth replacement patterns in tyrannosaurid theropods, as indicated by data from a juvenile specimen of Tarbosaurus bataar, will be published by Hanai & Tsuihiji (2019).[41]
- Description of an ornithomimid specimen UALVP 16182, putatively assigned to the genus Dromiceiomimus, and a study on the validity of this genus will be published by Macdonald & Currie (2019).[42]
- A study on the anatomy of the skull of Beipiaosaurus inexpectus is published by Liao & Xu (2019).[43]
- Histological analysis of the forelimb bones of Daliansaurus liaoningensis is presented by Shen et al. (2019).[44]
- Evidence indicating that the pennaceous feathers of Anchiornis were composed of both feather β-keratins and α-keratins is presented by Pan et al. (2019).[45]
- A dinosauriform femur, possibly of a juvenile specimen of the species Pampadromaeus barberenai, will be described from the Late Triassic of southern Brazil by Müller et al. (2019).[46]
- A study on the bony labyrinth scale and geometry through ontogeny in Massospondylus carinatus, evaluating whether the putative gait change from quadrupedal juvenile to bipedal adult is reflected in labyrinth morphology, will be published by Neenan et al. (2019).[47]
- A study on the leverage of forelimb muscles in the transition from the narrow‐gauge stance of basal sauropods to a wide‐gauge stance in titanosaurs will be published by Klinkhamer et al. (2019).[48]
- An isolated tooth-crown of a member of Eusauropoda, possibly a member of Mamenchisauridae or Euhelopodidae, is described from the Upper Jurassic Qigu Formation (China) by Maisch & Matzke (2019), representing the first record of an eusauropod from this formation reported so far.[49]
- A cervical vertebra of a member of the genus Omeisaurus will be described from the Middle Jurassic Lower Member of the Shaximiao Formation (China) by Tan et al. (2019), providing new information on the skeletal morphology of this genus, and representing the easternmost occurrence of Omeisaurus reported so far.[50]
- Redescription of the complete series of the neck vertebrae of Xinjiangtitan shanshanesis will be published by Zhang et al. (2019).[51]
- Partial vertebra of a sauropod dinosaur belonging to the group Turiasauria is described from the Lower Cretaceous Wealden Supergroup (United Kingdom) by Mannion (2019).[52]
- A study on the phylogenetic relationships of the Late Jurassic sauropod dinosaurs from the Tendaguru Formation of Tanzania (Australodocus bohetii, Janenschia robusta and Tendaguria tanzaniensis) is published by Mannion et al. (2019).[53]
- Ibiricu, Martínez & Casal (2019) present the reconstruction of the pelvic and hindlimb musculature of Epachthosaurus sciuttoi.[54]
- Fossils of a titanosaur sauropod related to Rapetosaurus and the indeterminate Italian titanosaur specimen MSNM V7157 are described from the Algora vertebrate fossil site located in the Cenomanian strata of the Arenas de Utrillas Formation (Spain) by Mocho et al. (2019).[55]
- New sauropod trackway, representing the first record of a narrow-gauge sauropod trackway from the Cenomanian reported so far, will be described from the Candeleros Formation (Argentina) by Heredia et al. (2019).[56]
- New reconstruction of the jaw musculature of ornithischian dinosaurs, rejecting the notion of presence of novel "cheek" muscle, is proposed by Nabavizadeh (2019).[57]
- A study on the morphological diversity of stegosaurs through the evolutionary history of the group will be published by Romano (2019).[58]
- A study on pathological characteristics of left femur of a specimen of Gigantspinosaurus sichuanensis from the Late Jurassic of China will be published by Hao et al. (2019), who interpret this specimen as probably affected by bone tumor.[59]
- A study on the age of the Kulinda locality (south-eastern Siberia, Russia) which yielded fossils of Kulindadromeus zabaikalicus is published by Cincotta et al. (2019).[60]
- A study on the nature of the fluvial systems of Laramidia during the Late Cretaceous, as indicated by data from vertebrate and invertebrate fossils from the Kaiparowits Formation of southern Utah, and on the behavior of hadrosaurid dinosaurs over these landscapes, will be published by Crystal et al. (2019).[61]
- New information on the anatomy of the skeleton of Pachyrhinosaurus perotorum is presented by Tykoski, Fiorillo & Chiba (2019), who also provide a new diagnosis of this species.[62]
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Gen. et sp. nov |
Valid |
Prieto-Márquez et al. |
A hadrosaurid ornithopod belonging to the subfamily Lambeosaurinae. Genus includes new species A. arcanus. |
|||||
Gen. et sp. nov |
Valid |
Ren, Huang & You |
A mamenchisaurid sauropod. Genus includes new species A. diboensis. |
|||||
Gen. et sp. nov |
Valid |
Gallina et al. |
A dicraeosaurid sauropod. The type species is B. pronuspinax. |
|||||
Gen. et sp. nov |
Valid |
Zhang et al. |
A hadrosaurid ornithopod belonging to the subfamily Saurolophinae and the tribe Edmontosaurini. The type species is L. youngi. |
|||||
Gen. et sp. nov |
Valid |
Coria et al. |
A dicraeosaurid sauropod. The type species is P. faundezi. |
|||||
Gen. et sp. nov |
Valid |
Delcourt & Iori |
An abelisaurid theropod. Genus includes new species T. simonattoi. |
|||||
Gen. et sp. nov |
Valid |
Mannion et al. |
A mamenchisaurid sauropod. Genus includes new species W. keranjei. |
Birds
Research
- A study on the impact of varying oxygen concentrations, global temperatures and air densities on the flight performance of extinct birds and on major diversification events which took place during the evolution of birds is published by Serrano et al. (2019).[69]
- A study on the total mass of the dentition of Mesozoic birds, and on the impact of the reduction and loss of teeth on total body mass of Mesozoic birds, is published by Zhou, Sullivan & Zhang (2019).[70]
- A review of the available evidence of the diet of Mesozoic birds, especially those known from the Lower Cretaceous Jehol Lagerstätte (China), is published by O’Connor (2019).[71]
- A study on the diversity of melanosome morphology in iridescent feathers of extant birds, and on its implications for inferring iridescence in fossil feathers in general and in Eocene birds cf. Primotrogon and Scaniacypselus in particular, is published by Nordén et al. (2019).[72]
- A study on Praeornis sharovi from the Late Jurassic of Kazakhstan will be published by Agnolin, Rozadilla & Carvalho (2019), who interpret the fossil as a tail feather of a basal bird.[73]
- A geochemical halo of the calamus of the holotype feather of Archaeopteryx lithographica, detected using Laser-Stimulated Fluorescence, is reported by Kaye et al. (2019), who also assess the implications of their findings for the identification of this feather.[74]
- A comparative study of all named taxa referred to Confuciusornithiformes, taxonomic revision of the group and a study on the phylogenetic relationships of members of the group is published by Wang, O'Connor & Zhou (2019).[75]
- A remarkably well-preserved foot of an enantiornithine bird, accompanied by part of the wing plumage, is described from the Cretaceous amber from Myanmar by Xing et al. (2019).[76]
- A study comparing the hindlimb morphology of hesperornithiforms and modern foot-propelled diving birds is published by Bell, Wu & Chiappe (2019).[77]
- A study on bird footprints from the Maastrichtian–Danian Yacoraite Formation (Argentina) is published by de Valais & Cónsole-Gonella (2019).[78]
- A fossil tinamou belonging to the genus Eudromia, exceeding the size range of living species of the genus, will be described from the Lujanian sediments in Marcos Paz County (Buenos Aires Province, Argentina) by Cenizo et al. (2019).[79]
- A study on the microstructure of the bones of Vegavis iaai is published by Garcia Marsà, Agnolín & Novas (2019).[80]
- A nearly complete tarsometatarsus of the least seedsnipe (Thinocorus rumicivorus) will be described from the Ensenadan of Argentina by Picasso, De Mendoza & Gelfo (2019).[81]
- Pedal phalanx of a penguin affected by osteomyelitis is described from the Eocene of West Antarctica by Jadwiszczak & Rothschild (2019).[82]
- Globuli ossei (subspherical structures of endochondral origin, inserted in the hypertrophic cartilage of long bones) are reported for the first time in a bird (a fossil penguin Delphinornis arctowskii from Antarctica) by Garcia Marsà, Tambussi & Cerda (2019).[83]
- A study on changes in the population size of the Adélie penguin colonies and relative krill abundance in the Prydz Bay (Antarctica) during the 2nd millennium, as indicated by data from ornithogenic sediment cores from the Vestfold Hills, will be published by Gao et al. (2019).[84]
- A study on the holotype specimen of Calcardea junnei will be published by Mayr, Gingerich & Smith (2019), who reject the interpretation of this species as a heron, and claim that this bird resembled parrot-like taxon Vastanavis from the early Eocene of India.[85]
- A study on the identity of a parakeet specimen held at National Museums Scotland, interpreted as most likely originating from Mauritius by Cheke & Jansen (2016),[86] is published by Jones et al. (2019), who consider this parakeet to be the only known skin specimen of extinct Réunion parakeet.[87]
- Remains of 32 species of seabirds and related taxa will be reported from the middle–late Pleistocene Shiriya local fauna (northeastern Japan) by Watanabe, Matsuoka & Hasegawa (2019).[88]
- A study on the date of extinction of the Tristan moorhen, the Inaccessible Island finch and the Tristan albatross on the main island of the Tristan da Cunha archipelago, aiming to place these extinctions in the context of the changing island ecosystems of the nineteenth and early twentieth centuries, will be published by Bond, Carlson & Burgio (2019).[89]
- A study on the fossil bird remains from the Pliocene locality of Kanapoi (Kenya), indicating presence of many aquatic birds, will be published by Field (2019).[90]
- Description of Late Pleistocene and Holocene bird remains from Jerimalai and Matja Kuru 1 sites in East Timor will be published by Meijer, Louys & O'Connor (2019).[91]
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
Valid |
Kundrát et al. |
||||||
Gen. et sp. nov |
In press |
Tambussi et al. |
Early Paleocene |
A stem-anseriform. Genus includes new species C. antarcticus. |
||||
Gen. et sp. nov |
In press |
Liu et al. |
A member of Enantiornithes. Genus includes new species O. ritteri. |
|||||
Sp. nov |
Valid |
Mayr et al. |
Early Oligocene |
A heron. |
||||
Gen. et sp. nov |
Valid |
Wang & Zhou |
A member of Enantiornithes. Genus includes new species S. graciles. |
|||||
Sp. nov |
Hieronymus, Waugh & Clarke |
Early Oligocene |
A member of the family Zygodactylidae. |
Pterosaurs
Research
- Pycnofibers showing diagnostic features of feathers are reported in two specimens of anurognathid pterosaurs (probably belonging either to the genus Jeholopterus or Dendrorhynchoides)[98] from the Jurassic of China by Yang et al. (2019).[99]
- Redescription of the holotype specimen of Mythunga camara will be published by Pentland & Poropat (2019).[100]
- A study on intervertebral foramina in Vectidraco, Anhanguera and Coloborhynchus, and on their implications for inferring palaeoecology and locomotion of these pterosaurs, will be published by Martin‐Silverstone, Sykes & Naish (2019).[101]
New taxa
Name | Novelty | Status | Authors | Age | Type locality | Country | Notes | Images |
---|---|---|---|---|---|---|---|---|
Sp. nov |
In press |
Jacobs et al. |
Other archosaurs
Research
- Evidence from coprolites, isolated worn teeth, fossil regurgitates and crushed or bite-marked dicynodont bones, indicating that Triassic archosaur Smok wawelski was at least an occasional osteophage consuming bones in a manner comparable to tyrannosaurid theropod dinosaurs, is presented by Qvarnström, Ahlberg & Niedźwiedzki (2019).[103]
- A study on the microstructure of the long bones (femur and tibiae) of Lewisuchus admixtus is published by Garcia Marsà, Agnolín & Novas (2019).[104]
- A study on the anatomy of the braincase of Silesaurus opolensis will be published by Piechowski, Niedźwiedzki & Tałanda (2019).[105]
- A study on the phylogenetic relationships of Pisanosaurus mertii will be published by Baron (2019), who interprets this taxon as a likely silesaurid.[106]
References
- ^ Tariq Zouheir; Abdelkbir Hminna; Hendrik Klein; Abdelouahed Lagnaoui; Hafid Saber; Joerg W. Schneider (2019). "Unusual archosaur trackway and associated tetrapod ichnofauna from Irohalene member (Timezgadiouine formation, late Triassic, Carnian) of the Argana Basin, Western High Atlas, Morocco". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1513506.
- ^ Ashley L. Ferguson; David J. Varricchio; Alex J. Ferguson (2019). "Nest site taphonomy of colonial ground-nesting birds at Bowdoin National Wildlife Refuge, Montana". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1546699.
- ^ Akinobu Watanabe; Paul M. Gignac; Amy M. Balanoff; Todd L. Green; Nathan J. Kley; Mark A. Norell (2019). "Are endocasts good proxies for brain size and shape in archosaurs throughout ontogeny?". Journal of Anatomy. in press. doi:10.1111/joa.12918. PMID 30506962.
- ^ Devin K. Hoffman; Andrew B. Heckert; Lindsay E. Zanno (2019). "Disparate growth strategies within Aetosauria: Novel histologic data from the aetosaur Coahomasuchus chathamensis". The Anatomical Record. in press. doi:10.1002/ar.24019. PMID 30408334.
- ^ Lúcio Roberto-Da-Silva; Rodrigo Temp Müller; Marco Aurélio Gallo de França; Sérgio Furtado Cabreira; Sérgio Dias-Da-Silva (2019). "An impressive skeleton of the giant top predator Prestosuchus chiniquensis (Pseudosuchia: Loricata) from the Triassic of Southern Brazil, with phylogenetic remarks". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1559841.
- ^ Bianca Martins Mastrantonio; María Belén Von Baczko; Julia Brenda Desojo; Cesar L. Schultz (2019). "The skull anatomy and cranial endocast of the pseudosuchid archosaur Prestosuchus chiniquensis from the Triassic of Brazil". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00527.2018.
- ^ Eric W. Wilberg; Alan H. Turner; Christopher A. Brochu (2019). "Evolutionary structure and timing of major habitat shifts in Crocodylomorpha". Scientific Reports. 9: Article number 514. doi:10.1038/s41598-018-36795-1. PMC 6346023. PMID 30679529.
- ^ Philip D. Mannion; Alfio Alessandro Chiarenza; Pedro L. Godoy; Yung Nam Cheah (2019). "Spatiotemporal sampling patterns in the 230 million year fossil record of terrestrial crocodylomorphs and their impact on diversity". Palaeontology. in press. doi:10.1111/pala.12419.
- ^ K. N. Dollman; P. A. Viglietti; J. N. Choiniere (2019). "A new specimen of Orthosuchus stormbergi (Nash 1968) and a review of the distribution of Southern African Lower Jurassic crocodylomorphs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1387110.
- ^ Andrej Čerňanský; Ján Schlögl; Tomáš Mlynský; Štefan Józsa (2019). "First evidence of the Jurassic thalattosuchian (both teleosaurid and metriorhynchid) crocodylomorphs from Slovakia (Western Carpathians)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1414212.
- ^ Caio Fabricio Cezar Geroto; Reinaldo J. Bertini (2019). "New material of Pepesuchus (Crocodyliformes; Mesoeucrocodylia) from the Bauru Group: implications about its phylogeny and the age of the Adamantina Formation". Zoological Journal of the Linnean Society. 185 (2): 312–334. doi:10.1093/zoolinnean/zly037.
- ^ Jeremy E. Martin; Raphaël Sarr; Lionel Hautier (2019). "A dyrosaurid from the Paleocene of Senegal". Journal of Paleontology. in press. doi:10.1017/jpa.2018.77.
- ^ Ivan T. Kuzmin; Pavel P. Skutschas; Elizaveta A. Boitsova; Hans-Dieter Sues (2019). "Revision of the large crocodyliform Kansajsuchus (Neosuchia) from the Late Cretaceous of Central Asia". Zoological Journal of the Linnean Society. 185 (2): 335–387. doi:10.1093/zoolinnean/zly027.
- ^ Alejandro Serrano-Martínez; Fabien Knoll; Iván Narváez; Stephan Lautenschlager; Francisco Ortega (2019). "Inner skull cavities of the basal eusuchian Lohuecosuchus megadontos (Upper Cretaceous, Spain) and neurosensorial implications". Cretaceous Research. 93: 66–77. doi:10.1016/j.cretres.2018.08.016.
- ^ Andrés Solórzano; Ascanio D. Rincón; Giovanne M. Cidade; Mónica Núñez-Flores; Leonardo Sánchez (2019). "Lower Miocene alligatoroids (Crocodylia) from the Castillo Formation, northwest of Venezuela". Palaeobiodiversity and Palaeoenvironments. in press. doi:10.1007/s12549-018-0332-5.
- ^ Giovanne M. Cidade; Andrés Solórzano; Ascánio Daniel Rincón; Douglas Riff; Annie Schmaltz Hsiou (2019). "Redescription of the holotype of the Miocene crocodylian Mourasuchus arendsi (Alligatoroidea, Caimaninae) and perspectives on the taxonomy of the species". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1528246.
- ^ Rafael César Lima Pedroso de Andrade; Mariana Valéria Araújo Sena; Esaú Victor Araújo; Renan Alfredo Machado Bantim; Douglas Riff; Juliana Manso Sayão (2019). "Osteohistological study on both fossil and living Caimaninae (Crocodyliformes, Crocodylia) from South America and preliminary comments on growth physiology and ecology". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1493475.
- ^ Massimo Delfino; Jeremy E. Martin; France de Lapparent de Broin; Thierry Smith (2019). "Evidence for a pre-PETM dispersal of the earliest European crocodyloids". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1396323.
- ^ Christopher A. Brochu (2019). "Pliocene crocodiles from Kanapoi, Turkana Basin, Kenya". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.10.003. PMID 29132687.
- ^ Masaya Iijima; Yoshitsugu Kobayashi (2019). "Mosaic nature in the skeleton of East Asian crocodylians fills the morphological gap between "Tomistominae" and Gavialinae". Cladistics. in press. doi:10.1111/cla.12372.
- ^ Jeremy E. Martin (2019). "The taxonomic content of the genus Gavialis from the Siwalik Hills of India and Pakistan". Papers in Palaeontology. in press. doi:10.1002/spp2.1247.
- ^ Giovanne M. Cidade; Daniel Fortier; Annie Schmaltz Hsiou (2019). "The crocodylomorph fauna of the Cenozoic of South America and its evolutionary history: A review". Journal of South American Earth Sciences. 90: 392–411. doi:10.1016/j.jsames.2018.12.026.
- ^ Jonas P. Souza-Filho; Rafael G. Souza; Annie Schmaltz Hsiou; Douglas Riff; Edson Guilherme; Francisco Ricardo Negri; Giovanne M. Cidade (2019). "A new caimanine (Crocodylia, Alligatoroidea) species from the Solimões Formation of Brazil and the phylogeny of Caimaninae". Journal of Vertebrate Paleontology. Online edition: e1528450. doi:10.1080/02724634.2018.1528450.
- ^ Rodolfo A. Coria; Francisco Ortega; Andrea B. Arcucci; Philip J. Currie (2019). "A new and complete peirosaurid (Crocodyliformes, Notosuchia) from Sierra Barrosa (Santonian, Upper Cretaceous) of the Neuquén Basin, Argentina". Cretaceous Research. 95: 89–105. doi:10.1016/j.cretres.2018.11.008.
- ^ Chun Li; Xiao-chun Wu; Scott Rufolo (2019). "A new crocodyloid (Eusuchia: Crocodylia) from the Upper Cretaceous of China". Cretaceous Research. 94: 25–39. doi:10.1016/j.cretres.2018.09.015.
- ^ Júlio C. A. Marsola; Gabriel S. Ferreira; Max C. Langer; David J. Button; Richard J. Butler (2019). "Increases in sampling support the southern Gondwanan hypothesis for the origin of dinosaurs". Palaeontology. in press. doi:10.1111/pala.12411.
- ^ V. Fondevilla; V. Riera; B. Vila; A. G. Sellés; J. Dinarès-Turell; E. Vicens; R. Gaete; O. Oms; À. Galobart (2019). "Chronostratigraphic synthesis of the latest Cretaceous dinosaur turnover in South-Western Europe". Earth-Science Reviews. in press. doi:10.1016/j.earscirev.2019.01.007.
- ^ Anthony P. Shillito; Neil S. Davies (2019). "Dinosaur-landscape interactions at a diverse Early Cretaceous tracksite (Lee Ness Sandstone, Ashdown Formation, southern England)". Palaeogeography, Palaeoclimatology, Palaeoecology. 514: 593–612. doi:10.1016/j.palaeo.2018.11.018.
- ^ Ricardo N. Melchor; David L. Rivarola; Aldo Martín Umazano; Magdalena Nalín Moyano; Fátima R. Mendoza Belmontes (2019). "Elusive Cretaceous Gondwanan theropods: the footprint evidence from central Argentina". Cretaceous Research. in press. doi:10.1016/j.cretres.2019.01.004.
- ^ Yuta Tsukiji; Yoichi Azuma; Fumito Shiraishi; Masateru Shibata (2019). "A diverse theropod footprint assemblage from the Lower Cretaceous Kitadani Formation, Tetori Group, central Japan". Cretaceous Research. 97: 16–33. doi:10.1016/j.cretres.2019.01.003.
- ^ Robert E. Weems (2019). "Evidence for bipedal prosauropods as the likely Eubrontes track-makers". Ichnos: an International Journal for Plant and Animal Traces. in press. doi:10.1080/10420940.2018.1532902.
- ^ Jens N. Lallensack; Shinobu Ishigaki; Abdelouahed Lagnaoui; Michael Buchwitz; Oliver Wings (2019). "Forelimb orientation and locomotion of sauropod dinosaurs: insights from the ?Middle Jurassic Tafaytour tracksites (Argana Basin, Morocco)". Journal of Vertebrate Paleontology. in press: e1512501. doi:10.1080/02724634.2018.1512501.
- ^ Shu-Kang Zhang; Jun-Fang Xie; Xing-Sheng Jin; Tian-Ming Du; Mei-Yan Huang (2019). "New type of dinosaur eggs from Yiwu, Zhejiang Province, China and a revision of Dongyangoolithus nanmaensis". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.190107.
- ^ Rodrigo Temp Müller; Sérgio Dias-da-Silva (2019). "Taxon sample and character coding deeply impact unstable branches in phylogenetic trees of dinosaurs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1418341.
- ^ Thomas M.S. Arden; Catherine G. Klein; Samir Zouhri; Nicholas R. Longrich (2019). "Aquatic adaptation in the skull of carnivorous dinosaurs (Theropoda: Spinosauridae) and the evolution of aquatic habits in Spinosaurus". Cretaceous Research. 93: 275–284. doi:10.1016/j.cretres.2018.06.013.
- ^ Rebecca J. Lakin; Nicholas R. Longrich (2019). "Juvenile spinosaurs (Theropoda: Spinosauridae) from the middle Cretaceous of Morocco and implications for spinosaur ecology". Cretaceous Research. 93: 129–142. doi:10.1016/j.cretres.2018.09.012.
- ^ Tom Brougham; Elizabeth T. Smith; Phil R. Bell (2019). "New theropod (Tetanurae: Avetheropoda) material from the 'mid'-Cretaceous Griman Greek Formation at Lightning Ridge, New South Wales, Australia". Royal Society Open Science. 6 (1): Article ID 180826. doi:10.1098/rsos.180826.
- ^ Elisabete Malafaia; Pedro Mocho; Fernando Escaso; Pedro Dantas; Francisco Ortega (2019). "Carcharodontosaurian remains (Dinosauria, Theropoda) from the Upper Jurassic of Portugal". Journal of Paleontology. 93 (1): 157–172. doi:10.1017/jpa.2018.47.
- ^ Elena Cuesta; Francisco Ortega; José L. Sanz (2019). "Axial osteology of Concavenator corcovatus (Theropoda; Carcharodontosauria) from the Lower Cretaceous of Spain". Cretaceous Research. 95: 106–120. doi:10.1016/j.cretres.2018.10.026.
- ^ Martin Kundrát; Xing Xu; Martina Hančová; Andrej Gajdoš; Yu Guo; Defeng Chen (2019). "Evolutionary disparity in the endoneurocranial configuration between small and gigantic tyrannosauroids". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1518442.
- ^ Tomoya Hanai; Takanobu Tsuihiji (2019). "Description of tooth ontogeny and replacement patterns in a juvenile Tarbosaurus bataar (Dinosauria: Theropoda) using CT‐scan data". The Anatomical Record. in press. doi:10.1002/ar.24014. PMID 30378771.
- ^ Ian Macdonald; Philip J. Currie (2019). "Description of a partial Dromiceiomimus (Dinosauria: Theropoda) skeleton with comments on the validity of the genus". Canadian Journal of Earth Sciences. in press. doi:10.1139/cjes-2018-0162.
- ^ Chun-Chi Liao; Xing Xu (2019). "Cranial osteology of Beipiaosaurus inexpectus (Theropoda: Therizinosauria)". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.190115.
- ^ Caizhi Shen; Junchang Lü; Chunling Gao; Masato Hoshino; Kentaro Uesugi; Martin Kundrát (2019). "Forearm bone histology of the small theropod Daliansaurus liaoningensis (Paraves: Troodontidae) from the Yixian Formation, Liaoning, China". Historical Biology: An International Journal of Paleobiology. 31 (2): 253–261. doi:10.1080/08912963.2017.1360296.
- ^ Yanhong Pan; Wenxia Zheng; Roger H. Sawyer; Michael W. Pennington; Xiaoting Zheng; Xiaoli Wang; Min Wang; Liang Hu; Jingmai O’Connor; Tao Zhao; Zhiheng Li; Elena R. Schroeter; Feixiang Wu; Xing Xu; Zhonghe Zhou; Mary H. Schweitzer (2019). "The molecular evolution of feathers with direct evidence from fossils". Proceedings of the National Academy of Sciences of the United States of America. in press. doi:10.1073/pnas.1815703116. PMID 30692253.
- ^ Rodrigo Temp Müller; Max Cardoso Langer; Cristian Pereira Pacheco; Sérgio Dias-da-Silva (2019). "The role of ontogeny on character polarization in early dinosaurs: a new specimen from the Late Triassic of southern Brazil and its implications". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1395421.
- ^ James M. Neenan; Kimberley E. J. Chapelle; Vincent Fernandez; Jonah N. Choiniere (2019). "Ontogeny of the Massospondylus labyrinth: implications for locomotory shifts in a basal sauropodomorph dinosaur". Palaeontology. in press. doi:10.1111/pala.12400.
- ^ Ada J. Klinkhamer; Heinrich Mallison; Stephen F. Poropat; Trish Sloan; Stephen Wroe (2019). "Comparative three‐dimensional moment arm analysis of the sauropod forelimb: Implications for the transition to a wide‐gauge stance in titanosaurs". The Anatomical Record. in press. doi:10.1002/ar.23977. PMID 30315633.
- ^ Michael W. Maisch; Andreas T. Matzke (2019). "First record of a eusauropod (Dinosauria: Sauropoda) from the Upper Jurassic Qigu-Formation (southern Junggar Basin, China), and a reconsideration of Late Jurassic sauropod diversity in Xinjiang". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (1): 109–117. doi:10.1127/njgpa/2019/0792.
- ^ Chao Tan; Hui Dai; Jian-Jun He; Feng Zhang; Xu-Feng Hu; Hai-Dong Yu; Ning Li; Guang-Biao Wei; Guang-Zhao Peng; Yong Ye; Qian-Nan Zhang; Xin-Xin Ren; Hai-Lu You (2019). "Discovery of Omeisaurus (Dinosauria: Sauropoda) in the Middle Jurassic Shaximiao Formation of Yunyang, Chongqing, China". Vertebrata PalAsiatica. in press. doi:10.19615/j.cnki.1000-3118.181115.
- ^ Xiao-Qin Zhang; Da-Qing Li; Yan Xie; Hai-Lu You (2019). "Redescription of the cervical vertebrae of the mamenchisaurid sauropod Xinjiangtitan shanshanesis Wu et al. 2013". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1539970.
- ^ Philip D. Mannion (2019). "A turiasaurian sauropod dinosaur from the Early Cretaceous Wealden Supergroup of the United Kingdom". PeerJ. 7: e6348. doi:10.7717/peerj.6348. PMC 6348093. PMID 30697494.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ a b Philip D. Mannion; Paul Upchurch; Daniela Schwarz; Oliver Wings (2019). "Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania: phylogenetic and biogeographic implications for eusauropod dinosaur evolution". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zly068.
- ^ Lucio M. Ibiricu; Rubén D. Martínez; Gabriel A. Casal (2019). "The pelvic and hindlimb myology of the basal titanosaur Epachthosaurus sciuttoi (Sauropoda: Titanosauria)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1535598.
- ^ P. Mocho; A. Pérez-García; M. Martín Jiménez; F. Ortega (2019). "New remains from the Spanish Cenomanian shed light on the Gondwanan origin of European Early Cretaceous titanosaurs". Cretaceous Research. 95: 164–190. doi:10.1016/j.cretres.2018.09.016.
- ^ Arturo Miguel Heredia; Pablo José Pazos; Diana Elizabeth Fernández; Ignacio Díaz Martínez; Marcos Comerio (2019). "A new narrow-gauge sauropod trackway from the Cenomanian Candeleros Formation, northern Patagonia, Argentina". Cretaceous Research. 96: 70–82. doi:10.1016/j.cretres.2018.11.016.
- ^ Ali Nabavizadeh (2019). "New reconstruction of cranial musculature in ornithischian dinosaurs: implications for feeding mechanisms and buccal anatomy". The Anatomical Record. in press. doi:10.1002/ar.23988. PMID 30332723.
- ^ Marco Romano (2019). "Disparity vs. diversity in Stegosauria (Dinosauria, Ornithischia): cranial and post-cranial sub-dataset provide different signals". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1397655.
- ^ Bao-Qiao Hao; Yong Ye; Susannah C R. Maidment; Sergio Bertazzo; Guang-Zhao Peng; Hai-Lu You (2019). "Femoral osteopathy in Gigantspinosaurus sichuanensis (Dinosauria: Stegosauria) from the Late Jurassic of Sichuan Basin, Southwestern China". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1561673.
- ^ Aude Cincotta; Ekaterina B. Pestchevitskaya; Sofia M. Sinitsa; Valentina S. Markevich; Vinciane Debaille; Svetlana A. Reshetova; Irina M. Mashchuk; Andrei O. Frolov; Axel Gerdes; Johan Yans; Pascal Godefroit (2019). "The rise of feathered dinosaurs: Kulindadromeus zabaikalicus, the oldest dinosaur with 'feather-like' structures". PeerJ. 7: e6239. doi:10.7717/peerj.6239.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Victoria F. Crystal; Erica S.J. Evans; Henry Fricke; Ian M. Miller; Joseph J.W. Sertich (2019). "Late Cretaceous fluvial hydrology and dinosaur behavior in southern Utah, USA: Insights from stable isotopes of biogenic carbonate". Palaeogeography, Palaeoclimatology, Palaeoecology. 516: 152–165. doi:10.1016/j.palaeo.2018.11.022.
- ^ Ronald S. Tykoski; Anthony R. Fiorillo; Kentaro Chiba (2019). "New data and diagnosis for the Arctic ceratopsid dinosaur Pachyrhinosaurus perotorum". Journal of Systematic Palaeontology. in press. doi:10.1080/14772019.2018.1532464.
- ^ Prieto-Márquez, Albert; Fondevilla, Víctor; Sellés, Albert G.; Wagner, Jonathan R.; Galobart; Àngel (2019). "Adynomosaurus arcanus, a new lambeosaurine dinosaur from the Late Cretaceous Ibero-Armorican Island of the European Archipelago". Cretaceous Research. 96: 19–37. doi:10.1016/j.cretres.2018.12.002.
- ^ Xin-Xin Ren; Jian-Dong Huang; Hai-Lu You (2019). "The second mamenchisaurid dinosaur from the Middle Jurassic of Eastern China". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1515935.
- ^ Pablo A. Gallina; Sebastián Apesteguía; Juan I. Canale; Alejandro Haluza (2019). "A new long-spined dinosaur from Patagonia sheds light on sauropod defense system". Scientific Reports. 9: Article number 1392. doi:10.1038/s41598-018-37943-3.
- ^ Jialiang Zhang; Xiaolin Wang; Qiang Wang; Shunxing Jiang; Xin Cheng; Ning Li; Rui Qiu (2019). "A new saurolophine hadrosaurid (Dinosauria: Ornithopoda) from the Upper Cretaceous of Shandong, China". Anais da Academia Brasileira de Ciências. in press. doi:10.1590/0001-3765201720160920. PMID 28876393.
- ^ Rodolfo A. Coria; Guillermo J. Windholz; Francisco Ortega; Philip J. Currie (2019). "A new dicraeosaurid sauropod from the Lower Cretaceous (Mulichinco Formation, Valanginian, Neuquén Basin) of Argentina". Cretaceous Research. 93: 33–48. doi:10.1016/j.cretres.2018.08.019.
- ^ Rafael Delcourt; Fabiano Vidoi Iori (2019). "A new Abelisauridae (Dinosauria: Theropoda) from São José do Rio Preto Formation, Upper Cretaceous of Brazil and comments on the Bauru Group fauna". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1546700.
- ^ Francisco José Serrano; Luis María Chiappe; Paul Palmqvist; Borja Figueirido; John Long; José Luis Sanz (2019). "The effect of long-term atmospheric changes on the macroevolution of birds". Gondwana Research. 65: 86–96. doi:10.1016/j.gr.2018.09.002.
- ^ Ya-Chun Zhou; Corwin Sullivan; Fu-Cheng Zhang (2019). "Negligible effect of tooth reduction on body mass in Mesozoic birds". Vertebrata PalAsiatica. 57 (1): 38–50. doi:10.19615/j.cnki.1000-3118.180307.
- ^ Jingmai O'Connor (2019). "The trophic habits of early birds". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 178–195. doi:10.1016/j.palaeo.2018.03.006.
- ^ Klara K. Nordén; Jaeike Faber; Frane Babarović; Thomas L. Stubbs; Tara Selly; James D. Schiffbauer; Petra Peharec Štefanić; Gerald Mayr; Fiann Smithwick; Jakob Vinther (2019). "Melanosome diversity and convergence in the evolution of iridescent avian feathers-implications for paleocolor reconstruction". Evolution. 73 (1): 15–27. doi:10.1111/evo.13641. PMID 30411346.
- ^ Federico L. Agnolin; Sebastián Rozadilla; Ismar de Souza Carvalho (2019). "Praeornis sharovi Rautian, 1978 a fossil feather from the early Late Jurassic of Kazakhstan". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1413102.
- ^ Thomas G. Kaye; Michael Pittman; Gerald Mayr; Daniela Schwarz; Xing Xu (2019). "Detection of lost calamus challenges identity of isolated Archaeopteryx feather". Scientific Reports. 9: Article number 1182. doi:10.1038/s41598-018-37343-7.
- ^ Min Wang; Jingmai O'Connor; Zhong-He Zhou (2019). "A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia)". Vertebrata PalAsiatica. 57 (1): 1–37. doi:10.19615/j.cnki.1000-3118.180530.
- ^ Lida Xing; Ryan C. McKellar; Jingmai O'Connor; Ming Bai; Kuowei Tseng; Luis M. Chiappe (2019). "A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber". Scientific Reports. 9: Article number 927. doi:10.1038/s41598-018-37427-4. PMC 6353931. PMID 30700773.
- ^ Alyssa Bell; Yun-Hsin Wu; Luis M. Chiappe (2019). "Morphometric comparison of the Hesperornithiformes and modern diving birds". Palaeogeography, Palaeoclimatology, Palaeoecology. 513: 196–207. doi:10.1016/j.palaeo.2017.12.010.
- ^ Silvina de Valais; Carlos Cónsole-Gonella (2019). "An updated review of the avian footprint record from the Yacoraite Formation (Maastrichtian-Danian), northwestern Argentina". Ichnos: an International Journal for Plant and Animal Traces. in press. doi:10.1080/10420940.2018.1538982.
- ^ Marcos Cenizo; Jorge Noriega; Juan Diederle; Esteban Soibelzon; Leopoldo Soibelzon; Sergio Rodriguez; Elisa Beilinson (2019). "An unexpected large Crested Tinamou (Eudromia, Tinamidae, Aves) near to Last Glacial Maximum (MIS 2, late Pleistocene) of the Argentine Pampas". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1491568.
- ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2019). "Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula". Historical Biology: An International Journal of Paleobiology. 31 (2): 163–167. doi:10.1080/08912963.2017.1348503.
- ^ Mariana B. J. Picasso; Ricardo S. De Mendoza; Javier N. Gelfo (2019). "A seedsnipe (Aves, Charadriiformes, Thinocoridae) from the Ensenadan Age/Stage (early-middle Pleistocene) of Buenos Aires, Argentina". Historical Biology: An International Journal of Paleobiology. in press: 1. doi:10.1080/08912963.2017.1370647.
- ^ Piotr Jadwiszczak; Bruce M. Rothschild (2019). "The first evidence of an infectious disease in early penguins". Historical Biology: An International Journal of Paleobiology. 31 (2): 177–180. doi:10.1080/08912963.2017.1353606.
- ^ Jordi Alexis Garcia Marsà; Claudia P. Tambussi; Ignacio A. Cerda (2019). "First evidence of globuli ossei in bird (Aves, Spheniciformes). Implications on paleohistology and bird behaviour". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1508288.
- ^ Yuesong Gao; Lianjiao Yang; Wenqing Yang; Yuhong Wang; Zhouqing Xie; Liguang Sun (2019). "Dynamics of penguin population size and food availability at Prydz Bay, East Antarctica, during the last millennium: A solar control". Palaeogeography, Palaeoclimatology, Palaeoecology. 516: 220–231. doi:10.1016/j.palaeo.2018.11.027.
- ^ Gerald Mayr; Philip D. Gingerich; Thierry Smith (2019). "Calcardea junnei Gingerich, 1987 from the late Paleocene of North America is not a heron, but resembles the early Eocene Indian taxon Vastanavis Mayr et al., 2007". Journal of Paleontology. in press. doi:10.1017/jpa.2018.85.
- ^ Anthony S. Cheke; Justin J. F. J. Jansen (2016). "An enigmatic parakeet – the disputed provenance of an Indian Ocean Psittacula". Ibis. 158 (2): 439–443. doi:10.1111/ibi.12347.
- ^ Carl G. Jones; Hazel A. Jackson; Robert Y. McGowan; Julian P. Hume; Joseph M. Forshaw; Vikash Tatayah; Ria Winters; Jim J. Groombridge (2019). "A parakeet specimen held at National Museums Scotland is a unique skin of the extinct Réunion Parakeet Psittacula eques eques: a reply to Cheke and Jansen (2016)". Ibis. 161 (1): 230–238. doi:10.1111/ibi.12673.
- ^ Junya Watanabe; Hiroshige Matsuoka; Yoshikazu Hasegawa (2019). "Pleistocene seabirds from Shiriya, northeast Japan: systematics and oceanographic context". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2018.1529764.
- ^ Alexander L. Bond; Colin J. Carlson; Kevin R. Burgio (2019). "Local extinctions of insular avifauna on the most remote inhabited island in the world". Journal of Ornithology. in press. doi:10.1007/s10336-018-1590-8.
- ^ Daniel J. Field (2019). "Preliminary paleoecological insights from the Pliocene avifauna of Kanapoi, Kenya: Implications for the ecology of Australopithecus anamensis". Journal of Human Evolution. in press. doi:10.1016/j.jhevol.2017.08.007. PMID 28966047.
- ^ Hanneke J.M. Meijer; Julien Louys; Sue O'Connor (2019). "First record of avian extinctions from the Late Pleistocene and Holocene of Timor Leste". Quaternary Science Reviews. 203: 170–184. doi:10.1016/j.quascirev.2018.11.005.
- ^ Martin Kundrát; John Nudds; Benjamin P. Kear; Junchang Lü; Per Ahlberg (2019). "The first specimen of Archaeopteryx from the Upper Jurassic Mörnsheim Formation of Germany". Historical Biology: An International Journal of Paleobiology. 31 (1): 3–63. doi:10.1080/08912963.2018.1518443.
- ^ Claudia P. Tambussi; Federico J. Degrange; Ricardo S. De Mendoza; Emilia Sferco; Sergrio Santillana (2019). "A stem anseriform from the early Palaeocene of Antarctica provides new key evidence in the early evolution of waterfowl". Zoological Journal of the Linnean Society. in press. doi:10.1093/zoolinnean/zly085.
- ^ Di Liu; L.M. Chiappe; Yuguang Zhang; F.J. Serrano; Qingjin Meng (2019). "Soft tissue preservation in two new enantiornithine specimens (Aves) from the Lower Cretaceous Huajiying Formation of Hebei Province, China". Cretaceous Research. 95. doi:10.1016/j.cretres.2018.10.017.
- ^ Gerald Mayr; Vanesa L. De Pietri; R. Paul Scofield; Thierry Smith (2019). "A fossil heron from the early Oligocene of Belgium – the earliest temporally well‐constrained record of the Ardeidae". Ibis. 161 (1): 79–90. doi:10.1111/ibi.12600.
- ^ Min Wang; Zhonghe Zhou (2019). "A new enantiornithine (Aves: Ornithothoraces) with completely fused premaxillae from the Early Cretaceous of China". Journal of Systematic Palaeontology. Online edition. doi:10.1080/14772019.2018.1527403.
- ^ Tobin L. Hieronymus; David A. Waugh; Julia A. Clarke (2019). "A new zygodactylid species indicates the persistence of stem passerines into the early Oligocene in North America". BMC Evolutionary Biology. 19: Article 3. doi:10.1186/s12862-018-1319-6. PMC 6321701. PMID 30611195.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Zixiao Yang; Baoyu Jiang; Maria E. McNamara; Stuart L. Kearns; Michael Pittman; Thomas G. Kaye; Patrick J. Orr; Xing Xu; Michael J. Benton (2019). "Supplementary information for: Pterosaur integumentary structures with complex feather-like branching" (PDF).
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Zixiao Yang; Baoyu Jiang; Maria E. McNamara; Stuart L. Kearns; Michael Pittman; Thomas G. Kaye; Patrick J. Orr; Xing Xu; Michael J. Benton (2019). "Pterosaur integumentary structures with complex feather-like branching" (PDF). Nature Ecology & Evolution. 3 (1): 24–30. doi:10.1038/s41559-018-0728-7. PMID 30568282.
- ^ Adele H. Pentland; Stephen F. Poropat (2019). "Reappraisal of Mythunga camara Molnar & Thulborn, 2007 (Pterosauria, Pterodactyloidea, Anhangueria) from the upper Albian Toolebuc Formation of Queensland, Australia". Cretaceous Research. 93: 151–169. doi:10.1016/j.cretres.2018.09.011.
- ^ Elizabeth Martin‐Silverstone; Daniel Sykes; Darren Naish (2019). "Does postcranial palaeoneurology provide insight into pterosaur behaviour and lifestyle? New data from the azhdarchoid Vectidraco and the ornithocheirids Coloborhynchus and Anhanguera". Palaeontology. in press. doi:10.1111/pala.12390.
- ^ Megan L. Jacobs; David M. Martill; Nizar Ibrahim; Nick Longrich (2019). "A new species of Coloborhynchus (Pterosauria, Ornithocheiridae) from the mid-Cretaceous of North Africa". Cretaceous Research. 95: 77–88. doi:10.1016/j.cretres.2018.10.018.
- ^ Martin Qvarnström; Per E. Ahlberg; Grzegorz Niedźwiedzki (2019). "Tyrannosaurid-like osteophagy by a Triassic archosaur". Scientific Reports. 9: Article number 925. doi:10.1038/s41598-018-37540-4. PMC 6353991. PMID 30700743.
- ^ Jordi Alexis Garcia Marsà; Federico L. Agnolín; Fernando Novas (2019). "Bone microstructure of Lewisuchus admixtus Romer, 1972 (Archosauria, Dinosauriformes)". Historical Biology: An International Journal of Paleobiology. 31 (2): 157–162. doi:10.1080/08912963.2017.1347646.
- ^ Rafał Piechowski; Grzegorz Niedźwiedzki; Mateusz Tałanda (2019). "Unexpected bird-like features and high intraspecific variation in the braincase of the Triassic relative of dinosaurs". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1418339.
- ^ Matthew G. Baron (2019). "Pisanosaurus mertii and the Triassic ornithischian crisis: could phylogeny offer a solution?". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2017.1410705.