Hippopede: Difference between revisions
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0 |
|||
Line 17: | Line 17: | ||
:<math> |
:<math> |
||
r^2 = 4 b (a - b \sin^{2} \theta) |
r^2 = 4 b (a - b \sin^{2}\! \theta) |
||
</math> |
</math> |
||
Revision as of 11:39, 8 April 2021
In geometry, a hippopede (from Ancient Greek ἱπποπέδη, "horse fetter") is a plane curve determined by an equation of the form
- ,
where it is assumed that c > 0 and c > d since the remaining cases either reduce to a single point or can be put into the given form with a rotation. Hippopedes are bicircular rational algebraic curves of degree 4 and symmetric with respect to both the x and y axes.
Special cases
When d > 0 the curve has an oval form and is often known as an oval of Booth, and when d < 0 the curve resembles a sideways figure eight, or lemniscate, and is often known as a lemniscate of Booth, after 19th-century mathematician James Booth who studied them. Hippopedes were also investigated by Proclus (for whom they are sometimes called Hippopedes of Proclus) and Eudoxus. For d = −c, the hippopede corresponds to the lemniscate of Bernoulli.
Definition as spiric sections
Hippopedes can be defined as the curve formed by the intersection of a torus and a plane, where the plane is parallel to the axis of the torus and tangent to it on the interior circle. Thus it is a spiric section which in turn is a type of toric section.
If a circle with radius a is rotated about an axis at distance b from its center, then the equation of the resulting hippopede in polar coordinates
or in Cartesian coordinates
- .
Note that when a > b the torus intersects itself, so it does not resemble the usual picture of a torus.
See also
References
- Lawrence JD. (1972) Catalog of Special Plane Curves, Dover. Pp. 145–146.
- Booth J. A Treatise on Some New Geometrical Methods, Longmans, Green, Reader, and Dyer, London, Vol. I (1873) and Vol. II (1877).
- Weisstein, Eric W. "Hippopede". MathWorld.
- "Hippopede" at 2dcurves.com
- "Courbes de Booth" at Encyclopédie des Formes Mathématiques Remarquables