Jump to content

Szpiro's conjecture: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m Reflist
Monkbot (talk | contribs)
m Task 18 (cosmetic): eval 10 templates: del empty params (3×); hyphenate params (5×);
Line 37: Line 37:
{{Main|Abc conjecture#Claimed proofs}}
{{Main|Abc conjecture#Claimed proofs}}


In August 2012, [[Shinichi Mochizuki]] claimed a proof of Szpiro's conjecture by developing a new theory called [[inter-universal Teichmüller theory]] (IUTT).<ref>{{cite journal |last1=Ball |first1=Peter |date= 10 September 2012|title=Proof claimed for deep connection between primes |url=https://www.nature.com/news/proof-claimed-for-deep-connection-between-primes-1.11378 |journal=Nature |volume= |issue= |pages= |doi=10.1038/nature.2012.11378 |access-date=19 April 2020|doi-access=free }}</ref> However, the papers have not been accepted by the mathematical community as providing a proof of the conjecture,<ref>{{cite magazine|magazine=[[New Scientist]]|title=Baffling ABC maths proof now has impenetrable 300-page 'summary'|url=https://www.newscientist.com/article/2146647-baffling-abc-maths-proof-now-has-impenetrable-300-page-summary/|first=Timothy|last=Revell|date=September 7, 2017}}</ref><ref>{{cite web | url=https://mathbabe.org/2015/12/15/notes-on-the-oxford-iut-workshop-by-brian-conrad/ |first = Brian |last=Conrad |authorlink=Brian Conrad| date=December 15, 2015 | title=Notes on the Oxford IUT workshop by Brian Conrad | access-date=March 18, 2018}}</ref><ref>{{cite journal |last1=Castelvecchi |first1=Davide |date=8 October 2015 |title=The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof |journal=Nature |volume=526 |issue= 7572|pages=178–181 |doi=10.1038/526178a |bibcode=2015Natur.526..178C |pmid=26450038|doi-access=free }}</ref> with [[Peter Scholze]] and [[Jakob Stix]] concluding in March 2018 that the gap was "so severe that … small modifications will not rescue the proof strategy".<ref>
In August 2012, [[Shinichi Mochizuki]] claimed a proof of Szpiro's conjecture by developing a new theory called [[inter-universal Teichmüller theory]] (IUTT).<ref>{{cite journal |last1=Ball |first1=Peter |date= 10 September 2012|title=Proof claimed for deep connection between primes |url=https://www.nature.com/news/proof-claimed-for-deep-connection-between-primes-1.11378 |journal=Nature |doi=10.1038/nature.2012.11378 |access-date=19 April 2020|doi-access=free }}</ref> However, the papers have not been accepted by the mathematical community as providing a proof of the conjecture,<ref>{{cite magazine|magazine=[[New Scientist]]|title=Baffling ABC maths proof now has impenetrable 300-page 'summary'|url=https://www.newscientist.com/article/2146647-baffling-abc-maths-proof-now-has-impenetrable-300-page-summary/|first=Timothy|last=Revell|date=September 7, 2017}}</ref><ref>{{cite web | url=https://mathbabe.org/2015/12/15/notes-on-the-oxford-iut-workshop-by-brian-conrad/ |first = Brian |last=Conrad |author-link=Brian Conrad| date=December 15, 2015 | title=Notes on the Oxford IUT workshop by Brian Conrad | access-date=March 18, 2018}}</ref><ref>{{cite journal |last1=Castelvecchi |first1=Davide |date=8 October 2015 |title=The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof |journal=Nature |volume=526 |issue= 7572|pages=178–181 |doi=10.1038/526178a |bibcode=2015Natur.526..178C |pmid=26450038|doi-access=free }}</ref> with [[Peter Scholze]] and [[Jakob Stix]] concluding in March 2018 that the gap was "so severe that … small modifications will not rescue the proof strategy".<ref>
{{ cite web | url=http://www.kurims.kyoto-u.ac.jp/~motizuki/SS2018-08.pdf | title=Why abc is still a conjecture
{{ cite web | url=http://www.kurims.kyoto-u.ac.jp/~motizuki/SS2018-08.pdf | title=Why abc is still a conjecture
|first1= Peter |last1= Scholze |authorlink1= Peter Scholze
|first1= Peter |last1= Scholze |author-link1= Peter Scholze
|first2= Jakob |last2= Stix |authorlink2= Jakob Stix
|first2= Jakob |last2= Stix |author-link2= Jakob Stix
| access-date=September 23, 2018 }} (updated version of their [http://www.kurims.kyoto-u.ac.jp/~motizuki/SS2018-05.pdf May report])</ref><ref>{{cite magazine|url=https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/ |title=Titans of Mathematics Clash Over Epic Proof of ABC Conjecture |magazine= [[Quanta Magazine]] |date=September 20, 2018 |first= Erica |last= Klarreich |authorlink= Erica Klarreich }}</ref><ref>{{ cite web | url=http://www.kurims.kyoto-u.ac.jp/~motizuki/IUTch-discussions-2018-03.html | title=March 2018 Discussions on IUTeich | access-date=October 2, 2018 }} Web-page by Mochizuki describing discussions and linking consequent publications and supplementary material</ref>
| access-date=September 23, 2018 }} (updated version of their [http://www.kurims.kyoto-u.ac.jp/~motizuki/SS2018-05.pdf May report])</ref><ref>{{cite magazine|url=https://www.quantamagazine.org/titans-of-mathematics-clash-over-epic-proof-of-abc-conjecture-20180920/ |title=Titans of Mathematics Clash Over Epic Proof of ABC Conjecture |magazine= [[Quanta Magazine]] |date=September 20, 2018 |first= Erica |last= Klarreich |author-link= Erica Klarreich }}</ref><ref>{{ cite web | url=http://www.kurims.kyoto-u.ac.jp/~motizuki/IUTch-discussions-2018-03.html | title=March 2018 Discussions on IUTeich | access-date=October 2, 2018 }} Web-page by Mochizuki describing discussions and linking consequent publications and supplementary material</ref>


==References==
==References==
{{Reflist}}
{{Reflist}}
{{more footnotes|date=January 2016}}
{{more footnotes|date=January 2016}}
* {{citation |first=S. |last=Lang |authorlink=Serge Lang |title=Survey of Diophantine geometry |publisher=[[Springer-Verlag]] |location=Berlin |year=1997 |isbn=3-540-61223-8 | zbl=0869.11051 | page=51 }}
* {{citation |first=S. |last=Lang |author-link=Serge Lang |title=Survey of Diophantine geometry |publisher=[[Springer-Verlag]] |location=Berlin |year=1997 |isbn=3-540-61223-8 | zbl=0869.11051 | page=51 }}
* {{citation |first=L. |last=Szpiro |title=Seminaire sur les pinceaux des courbes de genre au moins deux |journal=Astérisque |volume=86 |issue=3 |year=1981 | zbl=0463.00009 | pages=44–78 }}
* {{citation |first=L. |last=Szpiro |title=Seminaire sur les pinceaux des courbes de genre au moins deux |journal=Astérisque |volume=86 |issue=3 |year=1981 | zbl=0463.00009 | pages=44–78 }}
* {{citation |first=L. |last=Szpiro |title=Présentation de la théorie d'Arakelov |journal=Contemp. Math. |volume=67 |year=1987 | zbl=0634.14012 | pages=279–293 |doi=10.1090/conm/067/902599}}
* {{citation |first=L. |last=Szpiro |title=Présentation de la théorie d'Arakelov |journal=Contemp. Math. |volume=67 |year=1987 | zbl=0634.14012 | pages=279–293 |doi=10.1090/conm/067/902599}}

Revision as of 20:31, 13 December 2020

Modified Szpiro conjecture
FieldNumber theory
Conjectured byLucien Szpiro
Conjectured in1981
Equivalent toabc conjecture
Consequences

In number theory, Szpiro's conjecture relates the conductor and the discriminant of an elliptic curve. In a slightly modified form, it is equivalent to the well-known abc conjecture. It is named for Lucien Szpiro who formulated it in the 1980s.

Original statement

The conjecture states that: given ε > 0, there exists a constant C(ε) such that for any elliptic curve E defined over Q with minimal discriminant Δ and conductor f, we have

Modified Szpiro conjecture

The modified Szpiro conjecture states that: given ε > 0, there exists a constant C(ε) such that for any elliptic curve E defined over Q with invariants c4, c6 and conductor f (using notation from Tate's algorithm), we have

Claimed proofs

In August 2012, Shinichi Mochizuki claimed a proof of Szpiro's conjecture by developing a new theory called inter-universal Teichmüller theory (IUTT).[1] However, the papers have not been accepted by the mathematical community as providing a proof of the conjecture,[2][3][4] with Peter Scholze and Jakob Stix concluding in March 2018 that the gap was "so severe that … small modifications will not rescue the proof strategy".[5][6][7]

References

  1. ^ Ball, Peter (10 September 2012). "Proof claimed for deep connection between primes". Nature. doi:10.1038/nature.2012.11378. Retrieved 19 April 2020.
  2. ^ Revell, Timothy (September 7, 2017). "Baffling ABC maths proof now has impenetrable 300-page 'summary'". New Scientist.
  3. ^ Conrad, Brian (December 15, 2015). "Notes on the Oxford IUT workshop by Brian Conrad". Retrieved March 18, 2018.
  4. ^ Castelvecchi, Davide (8 October 2015). "The biggest mystery in mathematics: Shinichi Mochizuki and the impenetrable proof". Nature. 526 (7572): 178–181. Bibcode:2015Natur.526..178C. doi:10.1038/526178a. PMID 26450038.
  5. ^ Scholze, Peter; Stix, Jakob. "Why abc is still a conjecture" (PDF). Retrieved September 23, 2018. (updated version of their May report)
  6. ^ Klarreich, Erica (September 20, 2018). "Titans of Mathematics Clash Over Epic Proof of ABC Conjecture". Quanta Magazine.
  7. ^ "March 2018 Discussions on IUTeich". Retrieved October 2, 2018. Web-page by Mochizuki describing discussions and linking consequent publications and supplementary material