Jump to content

Schur product theorem: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Proof of definiteness: Made part of the proof clearer and fixed a small error in the proof.
Line 63: Line 63:
: <math>a^\textsf{T} (m_i \circ n_j) (m_i \circ n_j)^\textsf{T} a = \left(\sum_k m_{i,k} n_{j,k} a_k\right)^2</math>
: <math>a^\textsf{T} (m_i \circ n_j) (m_i \circ n_j)^\textsf{T} a = \left(\sum_k m_{i,k} n_{j,k} a_k\right)^2</math>


Since <math>N</math> is positive definite, there is a <math>j</math> for which <math>n_j \circ a \neq 0</math> (since otherwise <math>n_j^\textsf{T} a = 0<\math> for all <math>j<\math>), and likewise since <math>M</math> is positive definite there exists an i for which <math>\sum m_{i,k} \circ (n_j \circ a)_k = m_i^\textsd{T} (n_j \circ a) \neq 0.</math> However, this last sum is just \sum_k m_{i,k} n_{j,k} a_k\right</math>. Thus its square is positive. This completes the proof.
Since <math>N</math> is positive definite, there is a <math>j</math> for which <math>n_j \circ a \neq 0</math> (since otherwise <math>n_j^\textsf{T} a = \sum_k (n_j \circ a)_k = 0</math> for all <math>j</math>), and likewise since <math>M</math> is positive definite there exists an <math>i</math> for which <math>\sum m_{i,k} \circ (n_j \circ a)_k = m_i^\textsf{T} (n_j \circ a) \neq 0.</math> However, this last sum is just <math>\sum_k m_{i,k} n_{j,k} a_k</math>. Thus its square is positive. This completes the proof.


== References ==
== References ==

Revision as of 01:13, 1 May 2020

In mathematics, particularly in linear algebra, the Schur product theorem states that the Hadamard product of two positive definite matrices is also a positive definite matrix. The result is named after Issai Schur[1] (Schur 1911, p. 14, Theorem VII) (note that Schur signed as J. Schur in Journal für die reine und angewandte Mathematik.[2][3])

Proof

Proof using the trace formula

For any matrices and , the Hadamard product considered as a bilinear form acts on vectors as

where is the matrix trace and is the diagonal matrix having as diagonal entries the elements of .

Suppose and are positive definite, and so Hermitian. We can consider their square-roots and , which are also Hermitian, and write

Then, for , this is written as for and thus is strictly positive for , which occurs if and only if . This shows that is a positive definite matrix.

Proof using Gaussian integration

Case of M = N

Let be an -dimensional centered Gaussian random variable with covariance . Then the covariance matrix of and is

Using Wick's theorem to develop we have

Since a covariance matrix is positive definite, this proves that the matrix with elements is a positive definite matrix.

General case

Let and be -dimensional centered Gaussian random variables with covariances , and independent from each other so that we have

for any

Then the covariance matrix of and is

Using Wick's theorem to develop

and also using the independence of and , we have

Since a covariance matrix is positive definite, this proves that the matrix with elements is a positive definite matrix.

Proof using eigendecomposition

Proof of positive semidefiniteness

Let and . Then

Each is positive semidefinite (but, except in the 1-dimensional case, not positive definite, since they are rank 1 matrices). Also, thus the sum is also positive semidefinite.

Proof of definiteness

To show that the result is positive definite requires further proof. We shall show that for any vector , we have . Continuing as above, each , so it remains to show that there exist and for which corresponding term above is non-negative. For this we observe that

Since is positive definite, there is a for which (since otherwise for all ), and likewise since is positive definite there exists an for which However, this last sum is just . Thus its square is positive. This completes the proof.

References

  1. ^ "Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen". Journal für die reine und angewandte Mathematik. 1911 (140): 1–28. 1911. doi:10.1515/crll.1911.140.1.
  2. ^ Zhang, Fuzhen, ed. (2005). "The Schur Complement and Its Applications". Numerical Methods and Algorithms. 4. doi:10.1007/b105056. ISBN 0-387-24271-6. {{cite journal}}: Cite journal requires |journal= (help), page 9, Ch. 0.6 Publication under J. Schur
  3. ^ Ledermann, W. (1983). "Issai Schur and His School in Berlin". Bulletin of the London Mathematical Society. 15 (2): 97–106. doi:10.1112/blms/15.2.97.