Since <math>N</math> is positive definite, there is a <math>j</math> for which <math>n_j \circ a \neq 0</math> (since otherwise <math>n_j^\textsf{T} a = 0<\math> for all <math>j<\math>), and likewise since <math>M</math> is positive definite there exists an i for which <math>\sum m_{i,k} \circ (n_j \circ a)_k = m_i^\textsd{T} (n_j \circ a) \neq 0.</math> However, this last sum is just \sum_k m_{i,k} n_{j,k} a_k\right</math>. Thus its square is positive. This completes the proof.
Since <math>N</math> is positive definite, there is a <math>j</math> for which <math>n_j \circ a \neq 0</math> (since otherwise <math>n_j^\textsf{T} a = \sum_k (n_j \circ a)_k = 0</math> for all <math>j</math>), and likewise since <math>M</math> is positive definite there exists an <math>i</math> for which <math>\sum m_{i,k} \circ (n_j \circ a)_k = m_i^\textsf{T} (n_j \circ a) \neq 0.</math> However, this last sum is just <math>\sum_k m_{i,k} n_{j,k} a_k</math>. Thus its square is positive. This completes the proof.
Since a covariance matrix is positive definite, this proves that the matrix with elements is a positive definite matrix.
Proof using eigendecomposition
Proof of positive semidefiniteness
Let and . Then
Each is positive semidefinite (but, except in the 1-dimensional case, not positive definite, since they are rank 1 matrices). Also, thus the sum is also positive semidefinite.
Proof of definiteness
To show that the result is positive definite requires further proof. We shall show that for any vector , we have . Continuing as above, each , so it remains to show that there exist and for which corresponding term above is non-negative. For this we observe that
Since is positive definite, there is a for which (since otherwise for all ), and likewise since is positive definite there exists an for which However, this last sum is just . Thus its square is positive. This completes the proof.
References
^"Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen". Journal für die reine und angewandte Mathematik. 1911 (140): 1–28. 1911. doi:10.1515/crll.1911.140.1.
^Zhang, Fuzhen, ed. (2005). "The Schur Complement and Its Applications". Numerical Methods and Algorithms. 4. doi:10.1007/b105056. ISBN0-387-24271-6. {{cite journal}}: Cite journal requires |journal= (help), page 9, Ch. 0.6 Publication under J. Schur
^Ledermann, W. (1983). "Issai Schur and His School in Berlin". Bulletin of the London Mathematical Society. 15 (2): 97–106. doi:10.1112/blms/15.2.97.