Jump to content

Antarctic Cold Reversal: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Add: s2cid, author pars. 1-1. Removed parameters. Some additions/deletions were actually parameter name changes. | You can use this bot yourself. Report bugs here. | Suggested by Neko-chan | Category:History of climate variability and change | via #UCB_Category 13/53
Line 1: Line 1:
The '''Antarctic Cold Reversal''' ('''ACR''') was an important episode of cooling in the [[climate]] history of the Earth during the [[deglaciation]] at the close of the last [[ice age]]. It illustrates the complexity of the climate changes at the transition from the [[Pleistocene]] to the [[Holocene]] Epochs.
The '''Antarctic Cold Reversal''' ('''ACR''') was an important episode of cooling in the [[climate]] history of the Earth during the [[deglaciation]] at the close of the last [[ice age]]. It illustrates the complexity of the climate changes at the transition from the [[Pleistocene]] to the [[Holocene]] Epochs.


The [[Last Glacial Maximum]] and sea-level minimum occurred c. 21,000 years before present ([[Before Present|BP]]). Antarctic ice cores show gradual warming beginning 3000 years later. At about 14,700 BP, there was a large pulse of meltwater, identified as [[Meltwater pulse 1A]],<ref>The output of Meltwater pulse 1A has been calculated at 1,000,000 L/s.</ref> probably from either the [[Antarctic ice sheet]]<ref>{{Cite journal | author = Weber | author2 = Clark | author3 = Kuhn | author4 = Timmermann |author-link4= Axel Timmermann | title = Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation | journal = Nature | volume = 510 | issue = 7503 | pages = 134–138 | date = 5 June 2014 | doi = 10.1038/nature13397 |bibcode = 2014Natur.510..134W | pmid=24870232}}</ref> or the [[Laurentide Ice Sheet]].<ref>{{Cite journal | last = Gregoire | first = Lauren | title = Deglacial rapid sea level rises caused by ice-sheet saddle collapses | journal = Nature | volume = 487 | issue = 7406 | pages = 219–222 | date = 11 July 2012 | doi = 10.1038/nature11257 | bibcode = 2012Natur.487..219G | pmid=22785319| url = http://eprints.whiterose.ac.uk/76493/8/gregoirel1.pdf }}</ref> Meltwater pulse 1A produced a [[sea-level rise|marine transgression]] that raised global sea level about 20 meters in two to five centuries and is thought to have influenced the start of the [[Bølling Oscillation|Bølling]]/[[Allerød Oscillation|Allerød interstadial]], the major break with glacial cold in the Northern Hemisphere. Meltwater pulse 1A was followed in [[Antarctica]] and the [[Southern Hemisphere]] by a renewed cooling, the Antarctic Cold Reversal, in c. 14,500 BP,<ref>{{Harvnb|Oldfield|2005|pp=97; see also pp. 98–107}}.</ref> which lasted for two millennia &mdash; an instance of warming causing cooling.<ref>For a similar warming/cooling instance, see [[8.2 kiloyear event]].</ref> The ACR brought an average cooling of perhaps 3&nbsp;°C. The [[Younger Dryas]] cooling, in the Northern Hemisphere, began while the Antarctic Cold Reversal was still ongoing, and the ACR ended in the midst of the Younger Dryas.<ref>Blunier, Thomas; ''et al.'', "Phase Lag of Antarctic and Greenland Temperature in the last Glacial...," in {{Harvnb|Abrantes|Mix|1999|pp=121–138}}.</ref>
The [[Last Glacial Maximum]] and sea-level minimum occurred c. 21,000 years before present ([[Before Present|BP]]). Antarctic ice cores show gradual warming beginning 3000 years later. At about 14,700 BP, there was a large pulse of meltwater, identified as [[Meltwater pulse 1A]],<ref>The output of Meltwater pulse 1A has been calculated at 1,000,000 L/s.</ref> probably from either the [[Antarctic ice sheet]]<ref>{{Cite journal | author = Weber | author2 = Clark | author3 = Kuhn | author4 = Timmermann |author-link4= Axel Timmermann | title = Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation | journal = Nature | volume = 510 | issue = 7503 | pages = 134–138 | date = 5 June 2014 | doi = 10.1038/nature13397 |bibcode = 2014Natur.510..134W | pmid=24870232| s2cid = 205238911 }}</ref> or the [[Laurentide Ice Sheet]].<ref>{{Cite journal | last = Gregoire | first = Lauren | title = Deglacial rapid sea level rises caused by ice-sheet saddle collapses | journal = Nature | volume = 487 | issue = 7406 | pages = 219–222 | date = 11 July 2012 | doi = 10.1038/nature11257 | bibcode = 2012Natur.487..219G | pmid=22785319| s2cid = 4403135 | url = http://eprints.whiterose.ac.uk/76493/8/gregoirel1.pdf }}</ref> Meltwater pulse 1A produced a [[sea-level rise|marine transgression]] that raised global sea level about 20 meters in two to five centuries and is thought to have influenced the start of the [[Bølling Oscillation|Bølling]]/[[Allerød Oscillation|Allerød interstadial]], the major break with glacial cold in the Northern Hemisphere. Meltwater pulse 1A was followed in [[Antarctica]] and the [[Southern Hemisphere]] by a renewed cooling, the Antarctic Cold Reversal, in c. 14,500 BP,<ref>{{Harvnb|Oldfield|2005|pp=97; see also pp. 98–107}}.</ref> which lasted for two millennia &mdash; an instance of warming causing cooling.<ref>For a similar warming/cooling instance, see [[8.2 kiloyear event]].</ref> The ACR brought an average cooling of perhaps 3&nbsp;°C. The [[Younger Dryas]] cooling, in the Northern Hemisphere, began while the Antarctic Cold Reversal was still ongoing, and the ACR ended in the midst of the Younger Dryas.<ref>Blunier, Thomas; ''et al.'', "Phase Lag of Antarctic and Greenland Temperature in the last Glacial...," in {{Harvnb|Abrantes|Mix|1999|pp=121–138}}.</ref>


This pattern of climate decoupling between the Northern and Southern Hemispheres and of "southern lead, northern lag" would manifest in subsequent climate events. The cause or causes of this hemispheric decoupling, of the "lead/lag" pattern and of the specific mechanisms of the warming and cooling trends are still subjects of study and dispute among climate researchers. The specific dating and intensity of the Antarctic Cold Reversal are also under debate.<ref>{{Harvnb|Cronin|1999|pp=209–210, 458–459}}.</ref>
This pattern of climate decoupling between the Northern and Southern Hemispheres and of "southern lead, northern lag" would manifest in subsequent climate events. The cause or causes of this hemispheric decoupling, of the "lead/lag" pattern and of the specific mechanisms of the warming and cooling trends are still subjects of study and dispute among climate researchers. The specific dating and intensity of the Antarctic Cold Reversal are also under debate.<ref>{{Harvnb|Cronin|1999|pp=209–210, 458–459}}.</ref>
Line 17: Line 17:
*{{cite journal |last=Blunier |first=T. J. |title=Timing of the Antarctic Cold Reversal and the atmospheric CO<sub>2</sub> increase with respect to the Younger Dryas event |journal=Geophysical Research Letters |volume=24 |issue=21 |year=1997 |pages=2683–2686 |doi=10.1029/97GL02658 |display-authors=etal|bibcode = 1997GeoRL..24.2683B }}
*{{cite journal |last=Blunier |first=T. J. |title=Timing of the Antarctic Cold Reversal and the atmospheric CO<sub>2</sub> increase with respect to the Younger Dryas event |journal=Geophysical Research Letters |volume=24 |issue=21 |year=1997 |pages=2683–2686 |doi=10.1029/97GL02658 |display-authors=etal|bibcode = 1997GeoRL..24.2683B }}
*{{cite book |last=Cronin |first=Thomas M. |title=Principles of Paleoclimatology |location=New York |publisher=Columbia University Press |year=1999 |isbn=978-0-231-10954-3 }}
*{{cite book |last=Cronin |first=Thomas M. |title=Principles of Paleoclimatology |location=New York |publisher=Columbia University Press |year=1999 |isbn=978-0-231-10954-3 }}
*{{cite book |last=Ehlers |first=Jürgen |first2=Philip Leonard |last2=Gibbard |title=Quaternary Glaciations: Extent and Chronology. Part III: South America, Asia, Africa, Australasia, Antarctica |location=Amsterdam |publisher=Elsevier |year=2004 |isbn=978-0-444-51593-3 }}
*{{cite book |last1=Ehlers |first1=Jürgen |first2=Philip Leonard |last2=Gibbard |title=Quaternary Glaciations: Extent and Chronology. Part III: South America, Asia, Africa, Australasia, Antarctica |location=Amsterdam |publisher=Elsevier |year=2004 |isbn=978-0-444-51593-3 }}
*{{cite book |editor-last=Markgraf |editor-first=Vera |title=Interhemispheric Climate Linkages |location=Amsterdam |publisher=Elsevier |year=2001 |isbn=978-0-12-472670-3 }}
*{{cite book |editor-last=Markgraf |editor-first=Vera |title=Interhemispheric Climate Linkages |location=Amsterdam |publisher=Elsevier |year=2001 |isbn=978-0-12-472670-3 }}
*{{cite book |last=Oldfield |first=Frank |title=Environmental Change: Key Issues and Alternative Perspectives |url=https://archive.org/details/environmentalcha0000oldf |url-access=registration |location=Cambridge |publisher=Cambridge University Press |year=2005 |isbn=978-0-521-82936-6 |ref=harv }}
*{{cite book |last=Oldfield |first=Frank |title=Environmental Change: Key Issues and Alternative Perspectives |url=https://archive.org/details/environmentalcha0000oldf |url-access=registration |location=Cambridge |publisher=Cambridge University Press |year=2005 |isbn=978-0-521-82936-6 |ref=harv }}

Revision as of 20:16, 17 October 2020

The Antarctic Cold Reversal (ACR) was an important episode of cooling in the climate history of the Earth during the deglaciation at the close of the last ice age. It illustrates the complexity of the climate changes at the transition from the Pleistocene to the Holocene Epochs.

The Last Glacial Maximum and sea-level minimum occurred c. 21,000 years before present (BP). Antarctic ice cores show gradual warming beginning 3000 years later. At about 14,700 BP, there was a large pulse of meltwater, identified as Meltwater pulse 1A,[1] probably from either the Antarctic ice sheet[2] or the Laurentide Ice Sheet.[3] Meltwater pulse 1A produced a marine transgression that raised global sea level about 20 meters in two to five centuries and is thought to have influenced the start of the Bølling/Allerød interstadial, the major break with glacial cold in the Northern Hemisphere. Meltwater pulse 1A was followed in Antarctica and the Southern Hemisphere by a renewed cooling, the Antarctic Cold Reversal, in c. 14,500 BP,[4] which lasted for two millennia — an instance of warming causing cooling.[5] The ACR brought an average cooling of perhaps 3 °C. The Younger Dryas cooling, in the Northern Hemisphere, began while the Antarctic Cold Reversal was still ongoing, and the ACR ended in the midst of the Younger Dryas.[6]

This pattern of climate decoupling between the Northern and Southern Hemispheres and of "southern lead, northern lag" would manifest in subsequent climate events. The cause or causes of this hemispheric decoupling, of the "lead/lag" pattern and of the specific mechanisms of the warming and cooling trends are still subjects of study and dispute among climate researchers. The specific dating and intensity of the Antarctic Cold Reversal are also under debate.[7]

The onset of the Antarctic Cold Reversal was followed, after about 800 years, by an Oceanic Cold Reversal in the Southern Ocean.

See also

Notes and references

  1. ^ The output of Meltwater pulse 1A has been calculated at 1,000,000 L/s.
  2. ^ Weber; Clark; Kuhn; Timmermann (5 June 2014). "Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation". Nature. 510 (7503): 134–138. Bibcode:2014Natur.510..134W. doi:10.1038/nature13397. PMID 24870232. S2CID 205238911.
  3. ^ Gregoire, Lauren (11 July 2012). "Deglacial rapid sea level rises caused by ice-sheet saddle collapses" (PDF). Nature. 487 (7406): 219–222. Bibcode:2012Natur.487..219G. doi:10.1038/nature11257. PMID 22785319. S2CID 4403135.
  4. ^ Oldfield 2005, pp. 97, see also pp. 98–107.
  5. ^ For a similar warming/cooling instance, see 8.2 kiloyear event.
  6. ^ Blunier, Thomas; et al., "Phase Lag of Antarctic and Greenland Temperature in the last Glacial...," in Abrantes & Mix 1999, pp. 121–138.
  7. ^ Cronin 1999, pp. 209–210, 458–459.

Sources