Palaeopsychops: Difference between revisions
Line 53: | Line 53: | ||
===''P. douglasae''=== |
===''P. douglasae''=== |
||
''P. douglasae'' was described from the holotype hindwing collected by [[paleoichthyologist]] Mark Wilson from the |
''P. douglasae'' was described from the holotype hindwing collected by [[paleoichthyologist]] Mark Wilson from the Quilchena locality. Archibald & Makarkin (2006) picked the specific epithet as a matronym honoring Sheila Douglas for her paleoentomology work on British Columbian fossils. The part side of the holotype is broken into two sections with areas of the midwing and wing base missing, and little color patterning visible. The couterpart is better preserved, showing distinct color patterning and more of the cross-venation in the dark-colored area of the color-pattern.<ref name="Archibald2006"/> |
||
The most notable feature of the species is a distinctly undulant rear margin of the hind-wing.<ref name="Archibald2006"/> |
The most notable feature of the species is a distinctly undulant rear margin of the hind-wing.<ref name="Archibald2006"/> |
Revision as of 21:24, 15 April 2021
Palaeopsychops Temporal range: Ypresian
| |
---|---|
Palaeopsychops timmi holotype wing, SRIC SR 02-25-01 | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Neuroptera |
Family: | Ithonidae |
Genus: | †Palaeopsychops Andersen, 2001 |
Species | |
See text |
Palaeopsychops is an extinct genus of lacewing in the moth lacewings family Ithonidae. The genus is known from Early Eocene fossils found in Europe, and North America and is composed of ten species. The ten species have been informally grouped into When first described, the genus was placed in the family Psychopsidae, but later was moved to Polystoechotidae, which itself is now considered a subgroup of the moth lacewings.
Distribution & Age
The European species of Palaeopsychops are all known from the Early Eocene Fur Formation along the western Limfjord coast of Denmark.[1] Most of the 60 m (200 ft) thick formation is diatomites with an interspersed sequence of approximately 179 ash layers. Argon–argon radiometric dating of ash layer "+19", which is slightly lower in the strata then the "insect beds", has determined a 54.04 ± 0.14 million years ago age. [2]
Palaeopsychops species have been recovered from three locations in the Okanagan highlands, the Horsefly shales near Horsefly, British Columbia, the Coldwater Beds Quilchena site near Quilchena, British Columbia and the Klondike Mountain Formation in Republic, Washington, northern Ferry County, Washington. The Okanagan highlands are aged between 51.5 ± 0.4 million years ago for the Quilchena site to 49.4 ± 0.5 million years ago for the Klondike Mountain Formations Tom Thumb Tuff member.[2]
Paleoenvironment
The Fur formation represents a marine depositional environment of the inland water body which is ancestral to the North Sea. While the ancestral water body had an occasional opening to the Atlantic, it was entirely or almost entirely enclosed by land. The Fur formation outcrop is of a site that is an undetermined distance from the paleoshoreline with the preserved terrestrial flora and fauna suggested to have been carried from a shoreline to the north of the site by winds or drifting.[2] Analysis of the δ18O/δ16O isotope ratio found in mollusc shells in the formation indicates paleotemperatures were of a low megathermal mean annual temperature, though the presence in the paleobiota of thermophilic taxa could indicate a lower mean annual temperature combined with a higher coldest month mean temperature.[2]
All three Okanagan Highlands sites represent upland lake systems that were surrounded by a warm temperate ecosystem with nearby volcanism.[3] The highlands likely had a mesic upper microthermal to lower mesothermal climate, in which winter temperatures rarely dropped low enough for snow, and which were seasonably equitable.[4] The paleoforest surrounding the lakes have been described as precursors to the modern temperate broadleaf and mixed forests of Eastern North America and Eastern Asia. Based on the fossil biotas the lakes were higher and cooler then the coeval coastal forests preserved in the Puget Group and Chuckanut Formation of Western Washington, which are described as lowland tropical forest ecosystems. Estimates of the paleoelevation range between 0.7–1.2 km (0.43–0.75 mi) higher than the coastal forests. This is consistent with the paleoelevation estimates for the lake systems, which range between 1.1–2.9 km (1,100–2,900 m), which is similar to the modern elevation 0.8 km (0.50 mi), but higher.[4]
Estimates of the mean annual temperature have been derived from climate leaf analysis multivariate program (CLAMP) analysis of the Republic and Quilchena paleofloras, and leaf margin analysis (LMA) of all three paleofloras. The CLAMP results after multiple linear regressions for Republic gave a mean annual temperature of approximately 8.0 °C (46.4 °F), with the LMA gaving 9.2 ± 2.0 °C (48.6 ± 3.6 °F).[4] CLAMP results from Quilchena returned the higher 13.3 ± 2.1 °C (55.9 ± 3.8 °F) which was supported by the 14.8 ± 2.0 °C (58.6 ± 3.6 °F) returned from the LMA.[4][5] LMA of the Horsefly flora returned a mean annual temperature of 10.4 ± 2.2 °C (50.7 ± 4.0 °F). These are lower then the mean annual temperature estimates given for the coastal Puget Group, which is estimated to have been between 15–18.6 °C (59.0–65.5 °F). The bioclimactic analysis for Republic, Quilchena, and Horsefly suggest mean annual precipitation amounts of 115 ± 39 cm (45 ± 15 in) 130 ± 27 cm (51 ± 11 in) and 105 ± 47 cm (41 ± 19 in) respectively.[4]
History and classification
The genus was first described by Andersen (2001) from a series of 31 fore and hind wing part-counterpart fossils plus three partial body fossils found in the Fur Formation. Andersen chose the genus name as a combination of the psychopsid families nominal genus Psychops, itself a combination of the Greek words psyche and opsis meaning "butterfly" and "appearance", with the Latin word palaeo meaning "old".[1] Andersen designated Palaeopsychops latifasciatus as the type species, and named three other species in the same paper, Palaeopsychops abruptus, Palaeopsychops angustifasciatus, and Palaeopsychops maculatus.
Of the study material, the holotype specimens of all four species, along with paratypes for P. abruptus and P. angustifasciatus were deposited in the Geological Museum, University of Copenhagen. The four holoytypes plus P. abruptus paratype 1 were all declared by Andersen as danekræ, specimens of high scientific value to the Danish. Additional paratype fossils were spread out between a number of collections including the Fur Museum on Fur Island, the Moler Museum on Mors Island and private collections in Nykøbing Mors Denmark and in Germany. The genus was again examined by Makarkin and Archibald (2003) who described the first North American species Palaeopsychops dodgeorum from the Quilchena locality of the Coldwater Beds in British Columbia. "vena triplica"
A fifth species, Palaeopsychops douglasae, was described by Makarkin and Archibald (2003) from a hindwing recovered at the Coldwater Beds Quilchena site in British Columbia.[6]
The genera of Ithonidae have been informally grouped into three genus groups, the Ithonid genus group, the Polystoechotid genus-group, and the Rapismatid genus group, with Palaeopsychops placed in the Polystoechotid genus-group.[8]
wing hairs[9]
Description
P. abruptus
Fur Formation
P. angustifasciatus
Fur Formation
P. dodgeorum
Coldwater Beds, Quilchena Trichosors
P. douglasae
P. douglasae was described from the holotype hindwing collected by paleoichthyologist Mark Wilson from the Quilchena locality. Archibald & Makarkin (2006) picked the specific epithet as a matronym honoring Sheila Douglas for her paleoentomology work on British Columbian fossils. The part side of the holotype is broken into two sections with areas of the midwing and wing base missing, and little color patterning visible. The couterpart is better preserved, showing distinct color patterning and more of the cross-venation in the dark-colored area of the color-pattern.[2]
The most notable feature of the species is a distinctly undulant rear margin of the hind-wing.[2]
P. latifasciatus
P. latifasciatus is one of the Fur Formation species group, being described by Andersen (2001) from a holotype and eight paratype forewings. The name was derived from a combination of the Latin words latus meaning "broad" and fasciatus meaning "banded".[1] The forewings range between 3.7–4.4 cm (1.5–1.7 in) in length, and are just over twice as long as they are at the widest point. The preserved color pattering shows a trio of broad straight dark toned stripes crossing the wing at an oblique angle. A fourth vein is present near the wing apex, though it is not distinctly separated from the dark patterning of the posteroapical border.
P. maculatus
Fur Formation
P. marringerae
Klondike Mountain Formation
P. quadratus
Fur Formation
P. setosus
Horsefly Shales
P. timmi
Klondike Mountain Formation
References
- ^ a b c Andersen, S. (2001). "Silky lacewings (Neuroptera: Psychopsidae) from the Eocene-Paleocene transition of Denmark with a review of the fossil record and comments on phylogeny and zoogeography" (PDF). Insect Systematics & Evolution. 32 (4): 419–438.
- ^ a b c d e f Archibald, S. B.; Makarkin, V. N. (2006). "Tertiary giant lacewings (Neuroptera: Polystoechotidae): revision and description of new taxa from western North America and Denmark" (PDF). Journal of Systematic Palaeontology. 4 (2): 119–155.
- ^ Archibald, S.; Greenwood, D.; Smith, R.; Mathewes, R.; Basinger, J. (2011). "Great Canadian Lagerstätten 1. Early Eocene Lagerstätten of the Okanagan Highlands (British Columbia and Washington State)". Geoscience Canada. 38 (4): 155–164.
- ^ a b c d e Greenwood, D.R.; Archibald, S.B.; Mathewes, R.W; Moss, P.T. (2005). "Fossil biotas from the Okanagan Highlands, southern British Columbia and northeastern Washington State: climates and ecosystems across an Eocene landscape". Canadian Journal of Earth Sciences. 42 (2): 167–185. Bibcode:2005CaJES..42..167G. doi:10.1139/e04-100.
- ^ Mathewes, R. W.; Greenwood, D. R.; Archibald, S. B. (2016). "Paleoenvironment of the Quilchena flora, British Columbia, during the early Eocene climatic optimum". Canadian Journal of Earth Sciences. 53 (6): 574–590.
- ^ Makarkin, V. N.; Archibald, S. B. (2003). "Family affinity of the genus Palaeopsychops Andersen with description of a new species from the Early Eocene of British Columbia, Canada (Neuroptera: Polystoechotidae)". Annals of the Entomological Society of America. 96 (3): 171–180.
- ^ Makarkin, V. N.; Wedmann, S.; Weiterschan, T. (2014). "First record of the family Ithonidae (Neuroptera) from Baltic amber" (PDF). Zootaxa. 3796 (2): 385–393.
- ^ Zheng, B.; Ren, D.; Wang, Y. (2016). "Earliest true moth lacewing from the Middle Jurassic of Inner Mongolia, China" (PDF). Acta Palaeontologica Polonica. 61 (4): 847–851.
- ^ Yang, Q.; Makarkin, V. N.; Winterton, S. L.; Khramov, A. V.; Ren, D. (2012). "A remarkable new family of Jurassic insects (Neuroptera) with primitive wing venation and its phylogenetic position in Neuropterida". PLoS One. 7 (9). doi:10.1371/journal.pone.0044762.
{{cite journal}}
: CS1 maint: unflagged free DOI (link)