Jump to content

Fixed anvil temperature hypothesis: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Expanding article
Expanding article
Line 20: Line 20:


=== Observations ===
=== Observations ===

The fixed anvil temperature hypothesis has been backed by observational studies.<ref name="Asrar2013" />


== Implications ==
== Implications ==
Line 31: Line 33:
== References ==
== References ==
{{Reflist|refs=
{{Reflist|refs=
<ref name="Asrar2013">{{Cite book|url=http://link.springer.com/10.1007/978-94-007-6692-1|title=Climate Science for Serving Society|date=2013|publisher=Springer Netherlands|isbn=978-94-007-6691-4|editor-last=Asrar|editor-first=Ghassem R.|location=Dordrecht|language=en|doi=10.1007/978-94-007-6692-1|editor-last2=Hurrell|editor-first2=James W.|p=406}}</ref>
<ref name="HuVallis2019">{{cite journal |last1=Hu |first1=Shineng |last2=Vallis |first2=Geoffrey K. |title=Meridional structure and future changes of tropopause height and temperature |journal=Quarterly Journal of the Royal Meteorological Society |date=2019 |volume=145 |issue=723 |page=2709 |doi=10.1002/qj.3587 |url=https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3587 |language=en |issn=1477-870X}}</ref>
<ref name="HuVallis2019">{{cite journal |last1=Hu |first1=Shineng |last2=Vallis |first2=Geoffrey K. |title=Meridional structure and future changes of tropopause height and temperature |journal=Quarterly Journal of the Royal Meteorological Society |date=2019 |volume=145 |issue=723 |page=2709 |doi=10.1002/qj.3587 |url=https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.3587 |language=en |issn=1477-870X}}</ref>
<ref name="ZelinkaHartmann2011">{{cite journal |last1=Zelinka |first1=Mark D. |last2=Hartmann |first2=Dennis L. |title=The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics: TEMPERATURE SENSITIVITY OF HIGH CLOUDS |journal=Journal of Geophysical Research: Atmospheres |date=16 December 2011 |volume=116 |issue=D23 |page=1 |doi=10.1029/2011JD016459}}</ref>
<ref name="ZelinkaHartmann2011">{{cite journal |last1=Zelinka |first1=Mark D. |last2=Hartmann |first2=Dennis L. |title=The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics: TEMPERATURE SENSITIVITY OF HIGH CLOUDS |journal=Journal of Geophysical Research: Atmospheres |date=16 December 2011 |volume=116 |issue=D23 |page=1 |doi=10.1029/2011JD016459}}</ref>

Revision as of 10:35, 2 July 2021


Fixed anvil temperature hypothesis new article content ...

Background and hypothesis

In the tropics, the radiative cooling of the troposphere is balanced by the release of latent heat through condensation of water vapour lofted to high altitudes by convection. The radiative cooling is mostly a consequence of emissions by water vapour and thus becomes ineffective above the 200 hPa pressure level. Congruently, it is at this elevation that thick clouds and anvil clouds - the topmost convective clouds - concentrate.[1]

The "fixed anvil temperature hypothesis" stipulates that owing to energetic and thermodynamic constraints imposed by the Clausius-Clapeyron relationship, the temperature and thus radiative cooling of anvil clouds does not change much with surface temperature.[1] Specifically, cooling decreases below −73 °C (200 K) as the ineffective radiative cooling by CO
2
becomes dominant below that temperature.[2] Instead, the elevation of high clouds rises with surface temperatures.[3]

A related hypothesis is that tropopause temperatures are insensitive to surface warming; however it appears to have distinct mechanisms from the fixed anvil temperature process.[4]

Evidence

Models

The fixed anvil temperature hypothesis was initially formulated by Hartmann and Larson 2002 in the context of the NCAR/PSU MM5 climate model[5] but the stability of top cloud temperatures was already observed in an one-dimensional model by Hansen et al. 1981.[6] It has also been recovered in numerous general circulation models.[7]

At very high CO
2
concentrations approaching a runaway greenhouse however, other physical effects pertaining to cloud opacity may take over and dominate the fixed anvil temperature as surface temperatures reach extreme levels.[8]

Observations

The fixed anvil temperature hypothesis has been backed by observational studies.[9]

Implications

The fixed anvil temperature hypothesis has effects on global climate sensitivity, since anvil clouds are the most important source of outgoing radiation linked to tropical convection[10] and their temperature being stable would render the outgoing radiation non-responsive to surface temperature changes.[11] This creates a positive feedback component of cloud feedback.[12]

Alternative views

An alternative hypothesis is the iris hypothesis, according to which the coverage of anvil clouds declines with warming, thus allowing more radiation to escape into space and resulting in slower warming.[13] The proportionate anvil warming hypothesis by Zelinka and Hartmann 2010 was formulated on the basis of general circulation models and envisages a small increase of anvil temperature with high warming.[14]

References

  1. ^ a b Hartmann & Larson 2002, p. 1.
  2. ^ Hartmann & Larson 2002, p. 3.
  3. ^ Albern, Nicole; Voigt, Aiko; Pinto, Joaquim G. (2019). "Cloud-Radiative Impact on the Regional Responses of the Midlatitude Jet Streams and Storm Tracks to Global Warming". Journal of Advances in Modeling Earth Systems. 11 (7): 1949. doi:10.1029/2018MS001592. ISSN 1942-2466.
  4. ^ Hu, Shineng; Vallis, Geoffrey K. (2019). "Meridional structure and future changes of tropopause height and temperature". Quarterly Journal of the Royal Meteorological Society. 145 (723): 2709. doi:10.1002/qj.3587. ISSN 1477-870X.
  5. ^ Hartmann & Larson 2002, p. 2.
  6. ^ Del Genio 2016, p. 107.
  7. ^ Maher, Penelope; Gerber, Edwin P.; Medeiros, Brian; Merlis, Timothy M.; Sherwood, Steven; Sheshadri, Aditi; Sobel, Adam H.; Vallis, Geoffrey K.; Voigt, Aiko; Zurita-Gotor, Pablo (2019). "Model Hierarchies for Understanding Atmospheric Circulation". Reviews of Geophysics. 57 (2): 267. doi:10.1029/2018RG000607. ISSN 1944-9208.
  8. ^ Ramirez, Ramses M.; Kopparapu, Ravi Kumar; Lindner, Valerie; Kasting, James F. (August 2014). "Can Increased Atmospheric CO2 Levels Trigger a Runaway Greenhouse?". Astrobiology. 14 (8): 723. doi:10.1089/ast.2014.1153. ISSN 1531-1074.
  9. ^ Asrar, Ghassem R.; Hurrell, James W., eds. (2013). Climate Science for Serving Society. Dordrecht: Springer Netherlands. p. 406. doi:10.1007/978-94-007-6692-1. ISBN 978-94-007-6691-4.
  10. ^ Hartmann & Larson 2002, pp. 1–2.
  11. ^ Hartmann & Larson 2002, p. 4.
  12. ^ Del Genio 2016, p. 116.
  13. ^ Seeley, Jacob T.; Jeevanjee, Nadir; Langhans, Wolfgang; Romps, David M. (2019). "Formation of Tropical Anvil Clouds by Slow Evaporation". Geophysical Research Letters. 46 (1): 492. doi:10.1029/2018GL080747. ISSN 1944-8007.
  14. ^ Zelinka, Mark D.; Hartmann, Dennis L. (16 December 2011). "The observed sensitivity of high clouds to mean surface temperature anomalies in the tropics: TEMPERATURE SENSITIVITY OF HIGH CLOUDS". Journal of Geophysical Research: Atmospheres. 116 (D23): 1. doi:10.1029/2011JD016459.

Sources