Polyolefin: Difference between revisions
→Uses: apps |
Jake Spooky (talk | contribs) mNo edit summary |
||
Line 1: | Line 1: | ||
{{short description|Family of related polymers}} |
{{short description|Family of related polymers}} |
||
A '''polyolefin''' is a type of [[polymer]] with the general formula CH<sub>2</sub>CHR)<sub>n</sub>. They are derived from a handful of simple olefins ([[alkene]]s). Dominant in a commercial sense are [[polyethylene]] and [[polypropylene]]. More specialized polyolefins include [[polybutene]], [[polyisobutylene]] and [[polymethylpentene]]. Myriad copolymers are known. They are all colorless or white oils or solids. The name polyolefin indicates the dominant olefin from which they are prepared, i.e.,[[ethylene]], [[propylene]], [[butene]], [[isobutene]] and [[4-methyl-1-pentene]]. Polyolefins are not olefins, however. Polyolefins are the foundations of many chemical industries.<ref name=Ull>{{Ullmann|doi=10.1002/14356007.a21_487|title= Polyolefins|year=2000|last1=Whiteley|first1=Kenneth S.|last2=Heggs|first2=T. Geoffrey|last3=Koch|first3=Hartmut|last4=Mawer|first4=Ralph L.|last5=Immel|first5=Wolfgang}}</ref> |
A '''polyolefin''' is a type of [[polymer]] with the general formula (CH<sub>2</sub>CHR)<sub>n</sub>. They are derived from a handful of simple olefins ([[alkene]]s). Dominant in a commercial sense are [[polyethylene]] and [[polypropylene]]. More specialized polyolefins include [[polybutene]], [[polyisobutylene]] and [[polymethylpentene]]. Myriad copolymers are known. They are all colorless or white oils or solids. The name polyolefin indicates the dominant olefin from which they are prepared, i.e.,[[ethylene]], [[propylene]], [[butene]], [[isobutene]] and [[4-methyl-1-pentene]]. Polyolefins are not olefins, however. Polyolefins are the foundations of many chemical industries.<ref name=Ull>{{Ullmann|doi=10.1002/14356007.a21_487|title= Polyolefins|year=2000|last1=Whiteley|first1=Kenneth S.|last2=Heggs|first2=T. Geoffrey|last3=Koch|first3=Hartmut|last4=Mawer|first4=Ralph L.|last5=Immel|first5=Wolfgang}}</ref> |
||
==Industrial polyolefins== |
==Industrial polyolefins== |
Revision as of 18:54, 21 July 2021
A polyolefin is a type of polymer with the general formula (CH2CHR)n. They are derived from a handful of simple olefins (alkenes). Dominant in a commercial sense are polyethylene and polypropylene. More specialized polyolefins include polybutene, polyisobutylene and polymethylpentene. Myriad copolymers are known. They are all colorless or white oils or solids. The name polyolefin indicates the dominant olefin from which they are prepared, i.e.,ethylene, propylene, butene, isobutene and 4-methyl-1-pentene. Polyolefins are not olefins, however. Polyolefins are the foundations of many chemical industries.[1]
Industrial polyolefins
Most polyolefin are made by treating the monomer with metal-containing catalysts. The reaction is highly exothermic.
Traditionally, Ziegler-Natta catalysts are used. Named after the Nobelists Karl Ziegler and Giulio Natta, these catalysts are prepared by treating titanium chlorides with organoaluminium compounds, such as triethylaluminium. In some cases, the catalyst is insoluble and is used as a slurry. In the case of polyethylene, chromium-containing Phillips catalysts are used often. Kaminsky catalysts are yet another family of catalysts that are amenable to systematic changes to modify the tacticity of the polymer, especially applicable to polypropylene.
- Thermoplastic polyolefins
- low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), very-low-density polyethylene (VLDPE), ultra-low-density polyethylene (ULDPE), medium-density polyethylene (MDPE), polypropylene (PP), polymethylpentene (PMP), polybutene-1 (PB-1); ethylene-octene copolymers, stereo-block PP, olefin block copolymers, propylene–butane copolymers;
- Polyolefin elastomers (POE)
- polyisobutylene (PIB), poly(a-olefin)s, ethylene propylene rubber (EPR), ethylene propylene diene monomer (M-class) rubber (EPDM rubber).
Properties
Polyolefin properties range from liquidlike to rigid solids, and are primarily determined by their molecular weight and degree of crystallinity. Polyolefin degrees of crystallinity range from 0% (liquidlike) to 60% or higher (rigid plastics). Crystallinity is primarily governed by the lengths of polymer's crystallizable sequences established during polymerization.[2] Examples include adding a small percentage of comonomer like 1-hexene or 1-octene during the polymerization of ethylene,[3] or occasional irregular insertions ("stereo" or "regio" defects) during the polymerization of isotactic propylene.[4] The polymer's ability to crystallize to high degrees decreases with increasing content of defects.
Low degrees of crystallinity (0–20%) are associated with liquidlike-to-elastomeric properties. Intermediate degrees of crystallinity (20–50%) are associated with ductile thermoplastics, and degrees of crystallity over 50% are associated with rigid and sometimes brittle plastics.[5]
Polyolefin surfaces are not effectively joined together by solvent welding because they have excellent chemical resistance and are unaffected by common solvents. They can be adhesively bonded after surface treatment (they inherently have very low surface energies and don't wet-out well (the process of being covered and filled with resin)), and by some superglues (cyanoacrylates) and reactive (meth)acrylate glues.[6] They are extremely inert chemically but exhibit decreased strength at lower and higher temperatures.[7] As a result of this, thermal welding is a common bonding technique.
Practically all polyolefins that are of any practical or commercial importance are poly-alpha-olefin (or poly-α-olefin or polyalphaolefin, sometimes abbreviated as PAO), a polymer made by polymerizing an alpha-olefin. An alpha-olefin (or α-olefin) is an alkene where the carbon-carbon double bond starts at the α-carbon atom, i.e. the double bond is between the #1 and #2 carbons in the molecule. Alpha-olefins such as 1-hexene may be used as co-monomers to give an alkyl branched polymer (see chemical structure below), although 1-decene is most commonly used for lubricant base stocks.[8]
Many poly-alpha-olefins have flexible alkyl branching groups on every other carbon of their polymer backbone chain. These alkyl groups, which can shape themselves in numerous conformations, make it very difficult for the polymer molecules to align themselves up side-by-side in an orderly way. This results in lower contact surface area between the molecules and decreases the intermolecular interactions between molecules.[9] Therefore, many poly-alpha-olefins do not crystallize or solidify easily and are able to remain oily, viscous liquids even at lower temperatures.[10] Low molecular weight poly-alpha-olefins are useful as synthetic lubricants such as synthetic motor oils for vehicles and can be used over a wide temperature range.[8][10]
Even polyethylenes copolymerized with a small amount of alpha-olefins (such as 1-hexene, 1-octene, or longer) are more flexible than simple straight-chain high-density polyethylene, which has no branching.[7] The methyl branch groups on a polypropylene polymer are not long enough to make typical commercial polypropylene more flexible than polyethylene.
Uses
Focusing on polyethylene, the major applications for HDPE are film (wrapping of goods), blow molding (e.g., liquid containers, e.g., bleach bottles), injection molding (e.g., toys, screw caps), extrusion coating (e.g., coating on milk cartons), piping for distributing water and gas, insulation for telephone cables. Wire and cable insulation. LLPE is mainly (70%) used for film.[1]
Major applications of polypropylene are injection molding, fibers, and film.
Compared to polyethylene, polypropylene is stiffer but less prone to breaking. It is less dense and more chemical resilient.[11]
References
- ^ a b Whiteley, Kenneth S.; Heggs, T. Geoffrey; Koch, Hartmut; Mawer, Ralph L.; Immel, Wolfgang (2000). "Polyolefins". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a21_487. ISBN 978-3527306732.
- ^ Tashiro, Stein, Hsu, Macromolecules 25 (1992) 1801-1810
- ^ Alizadeh et. al., Macromolecules 32 (1999) 6221-6235
- ^ Bond, Eric Bryan; Spruiell, Joseph E.; Lin, J. S. (1 November 1999). "A WAXD/SAXS/DSC study on the melting behavior of Ziegler-Natta and metallocene catalyzed isotactic polypropylene". Journal of Polymer Science Part B: Polymer Physics. 37 (21): 3050–3064. Bibcode:1999JPoSB..37.3050B. doi:10.1002/(SICI)1099-0488(19991101)37:21<3050::AID-POLB14>3.0.CO;2-L.
- ^ A. J. Kinloch, R. J. Young, The Fracture Behaviour of Polymers, Chapman & Hall, 1995. pp. 338-369. ISBN 0 412 54070 3
- ^ "Properties and Applications of Polyolefin Bonding" "[1] Master Bond Inc." Retrieved on June 24, 2013
- ^ a b James Lindsay White, David D. Choi (2005). Polyolefins: Processing, Structure Development, And Properties. Munich: Hanser Verlag. ISBN 1569903697.[page needed]
- ^ a b R. M. Mortier, M. F. Fox and S. T. Orszulik, ed. (2010). Chemistry and Technology of Lubricants (3rd ed.). Netherlands: Springer. ISBN 978-1402086618.[page needed]
- ^ "Properties of Alkanes Archived 2013-01-07 at the Wayback Machine." Retrieved on June 24, 2013
- ^ a b L. R. Rudnick and R. L. Shubkin, ed. (1999). Synthetic Lubricants and High-performance Functional Fluids (2nd ed.). New York: Marcel Dekker. ISBN 0-8247-0194-1.[page needed]
- ^ "Comparison of PE and PP".