Jump to content

Auslander–Buchsbaum theorem: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Add: doi-access, bibcode, issue. | Use this bot. Report bugs. | Suggested by Headbomb | Linked from Wikipedia:WikiProject_Academic_Journals/Journals_cited_by_Wikipedia/Sandbox | #UCB_webform_linked 1591/1705
Line 6: Line 6:
==References==
==References==


*{{Citation | last1=Auslander | first1=Maurice | last2=Buchsbaum | first2=D. A. | title=Unique factorization in regular local rings | jstor=90213 | mr=0103906 | year=1959 | journal=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] | issn=0027-8424 | volume=45 | pages=733–734 | doi=10.1073/pnas.45.5.733 | pmid=16590434 | pmc=222624}}
*{{Citation | last1=Auslander | first1=Maurice | last2=Buchsbaum | first2=D. A. | title=Unique factorization in regular local rings | jstor=90213 | mr=0103906 | year=1959 | journal=[[Proceedings of the National Academy of Sciences|Proceedings of the National Academy of Sciences of the United States of America]] | issn=0027-8424 | volume=45 | issue=5 | pages=733–734 | doi=10.1073/pnas.45.5.733 | pmid=16590434 | pmc=222624| bibcode=1959PNAS...45..733A | doi-access=free }}
*{{Citation | last1=Nagata | first1=Masayoshi | author1-link=Masayoshi Nagata | title=A general theory of algebraic geometry over Dedekind domains. II. Separably generated extensions and regular local rings | jstor=2372791 | mr=0094344 | year=1958 | journal=[[American Journal of Mathematics]] | issn=0002-9327 | volume=80 | pages=382–420 | doi=10.2307/2372791}}
*{{Citation | last1=Nagata | first1=Masayoshi | author1-link=Masayoshi Nagata | title=A general theory of algebraic geometry over Dedekind domains. II. Separably generated extensions and regular local rings | jstor=2372791 | mr=0094344 | year=1958 | journal=[[American Journal of Mathematics]] | issn=0002-9327 | volume=80 | issue=2 | pages=382–420 | doi=10.2307/2372791}}


{{DEFAULTSORT:Auslander-Buchsbaum theorem}}
{{DEFAULTSORT:Auslander-Buchsbaum theorem}}

Revision as of 08:36, 20 August 2021

In commutative algebra, the Auslander–Buchsbaum theorem states that regular local rings are unique factorization domains.

The theorem was first proved by Maurice Auslander and David Buchsbaum (1959). They showed that regular local rings of dimension 3 are unique factorization domains, and Masayoshi Nagata (1958) had previously shown that this implies that all regular local rings are unique factorization domains.

References

  • Auslander, Maurice; Buchsbaum, D. A. (1959), "Unique factorization in regular local rings", Proceedings of the National Academy of Sciences of the United States of America, 45 (5): 733–734, Bibcode:1959PNAS...45..733A, doi:10.1073/pnas.45.5.733, ISSN 0027-8424, JSTOR 90213, MR 0103906, PMC 222624, PMID 16590434
  • Nagata, Masayoshi (1958), "A general theory of algebraic geometry over Dedekind domains. II. Separably generated extensions and regular local rings", American Journal of Mathematics, 80 (2): 382–420, doi:10.2307/2372791, ISSN 0002-9327, JSTOR 2372791, MR 0094344