Jump to content

Rule of product: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 1032721853 by Uni3993 (talk) ungrammatical and unneeded
Tag: Reverted
Line 15: Line 15:
\begin{matrix}
\begin{matrix}
\mathrm{is}\ \mathrm{to}\ \mathrm{choose}\ \mathrm{one}\ \mathrm{of} & \mathrm{these}. \\
\mathrm{is}\ \mathrm{to}\ \mathrm{choose}\ \mathrm{one}\ \mathrm{of} & \mathrm{these}. \\
& \overbrace{ \left\{ AX, AY, BX, BY, CX, CY \right\} }
& \overbrace{\left\{ AX, AY, BX, BY, CX, CY \right\}^{6 possible values}}
\end{matrix}</math>
\end{matrix}</math>



Revision as of 09:21, 13 October 2021

The elements of the set {A, B} can combine with the elements of the set {1, 2, 3} in six different ways.

In combinatorics, the rule of product or multiplication principle is a basic counting principle (a.k.a. the fundamental principle of counting). Stated simply, it is the idea that if there are a ways of doing something and b ways of doing another thing, then there are a · b ways of performing both actions.[1][2]

Examples

In this example, the rule says: multiply 3 by 2, getting 6.

The sets {A, B, C} and {X, Y} in this example are disjoint sets, but that is not necessary. The number of ways to choose a member of {A, B, C}, and then to do so again, in effect choosing an ordered pair each of whose components are in {A, B, C}, is 3 × 3 = 9.

As another example, when you decide to order pizza, you must first choose the type of crust: thin or deep dish (2 choices). Next, you choose one topping: cheese, pepperoni, or sausage (3 choices).

Using the rule of product, you know that there are 2 × 3 = 6 possible combinations of ordering a pizza.

Applications

In set theory, this multiplication principle is often taken to be the definition of the product of cardinal numbers.[1] We have

where is the Cartesian product operator. These sets need not be finite, nor is it necessary to have only finitely many factors in the product; see cardinal number.

The rule of sum is another basic counting principle. Stated simply, it is the idea that if we have a ways of doing something and b ways of doing another thing and we can not do both at the same time, then there are a + b ways to choose one of the actions.[3]

See also

References

  1. ^ a b Johnston, William, and Alex McAllister. A transition to advanced mathematics. Oxford Univ. Press, 2009. Section 5.1
  2. ^ "College Algebra Tutorial 55: Fundamental Counting Principle". Retrieved December 20, 2014.
  3. ^ Rosen, Kenneth H., ed. Handbook of discrete and combinatorial mathematics. CRC pres, 1999.