K562 cells: Difference between revisions
m Task 18 (cosmetic): eval 16 templates: del empty params (26×); |
consistent citation formatting |
||
Line 1: | Line 1: | ||
'''K562 cells''' were the first human immortalised myelogenous [[leukemia]] [[cell line]] to be established. K562 cells are of the [[Acute erythroid leukemia | erythroleukemia]] type, and the cell line is derived from a 53-year-old female [[chronic myelogenous leukemia]] patient in [[blast crisis]].<ref name="lozzio75"> |
'''K562 cells''' were the first human immortalised myelogenous [[leukemia]] [[cell line]] to be established. K562 cells are of the [[Acute erythroid leukemia | erythroleukemia]] type, and the cell line is derived from a 53-year-old female [[chronic myelogenous leukemia]] patient in [[blast crisis]].<ref name="lozzio75"> |
||
{{cite journal | vauthors = Lozzio CB, Lozzio BB | title = Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome | journal = Blood | volume = 45 | issue = 3 | pages = 321–334 | date = March 1975 | pmid = 163658 }}</ref><ref name="drexler2000">{{cite book | vauthors = Drexler HG | title = The Leukemia-Lymphoma Cell Line Factsbook | place = San Diego | publisher = Academic Press | year = 2000 }}</ref> The cells are non-adherent and rounded, are positive for the [[bcr:abl]] [[fusion gene]], and bear some proteomic resemblance to both undifferentiated [[granulocytes]]<ref name="klein1976"> |
|||
{{Citation |
|||
{{cite journal | vauthors = Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, Vánky F | title = Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia | journal = International Journal of Cancer | volume = 18 | issue = 4 | pages = 421–431 | date = October 1976 | pmid = 789258 | doi = 10.1002/ijc.2910180405 }}</ref> and [[erythrocytes]].<ref name="andersson1979"> |
|||
| last = Lozzio |
|||
{{cite journal | vauthors = Andersson LC, Nilsson K, Gahmberg CG | title = K562--a human erythroleukemic cell line | journal = International Journal of Cancer | volume = 23 | issue = 2 | pages = 143–147 | date = February 1979 | pmid = 367973 | doi = 10.1002/ijc.2910230202 }}</ref> |
|||
| first = C.B. |
|||
| last2 = Lozzio |
|||
| first2 = B.B. |
|||
| title = Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome |
|||
| year = 1975 |
|||
| journal = Blood |
|||
| volume = 45 |
|||
| issue = 3 |
|||
| pages = 321–34 |
|||
| pmid = 163658 |
|||
}}</ref><ref name="drexler2000">{{Citation |
|||
| last = Drexler |
|||
| first = H.G. |
|||
| title = The Leukemia-Lymphoma Cell Line Factsbook |
|||
| place = San Diego |
|||
| publisher = Academic Press |
|||
| year = 2000 |
|||
}} |
|||
</ref> The cells are non-adherent and rounded, are positive for the [[bcr:abl]] [[fusion gene]], and bear some proteomic resemblance to both undifferentiated [[granulocytes]]<ref name="klein1976"> |
|||
{{Citation |
|||
| last = Klein |
|||
| first = E. |
|||
| last2 = Ben-Bassat |
|||
| first2 = H. |
|||
| last3 = Neumann |
|||
| first3 = H. |
|||
| last4 = Ralph |
|||
| first4 = P. |
|||
| last5 = Zeuthen |
|||
| first5 = J. |
|||
| last6 = Polliack |
|||
| first6 = A. |
|||
| last7 = Vánky |
|||
| first7 = F. |
|||
| title = Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia |
|||
| year = 1976 |
|||
| doi = 10.1002/ijc.2910180405 |
|||
| journal = International Journal of Cancer |
|||
| volume = 18 |
|||
| issue = 4 |
|||
| pages = 421–31 |
|||
| pmid = 789258 |
|||
}}</ref> and [[erythrocytes]].<ref name="andersson1979"> |
|||
{{Citation |
|||
| last = Andersson |
|||
| first = L.C. |
|||
| last2 = Nilsson |
|||
| first2 = K. |
|||
| last3 = Gahmberg |
|||
| first3 = C.G. |
|||
| title = K562 - A human erythroleukemic cell line |
|||
| year = 1979 |
|||
| doi = 10.1002/ijc.2910230202 |
|||
| journal = International Journal of Cancer |
|||
| volume = 23 |
|||
| issue = 2 |
|||
| pages = 143–7 |
|||
| pmid = 367973 |
|||
}}</ref> |
|||
In culture they exhibit much less clumping than many other suspension lines, presumably due to the [[downregulation]] of surface adhesion molecules by bcr:abl.<ref>{{cite journal| |
In culture they exhibit much less clumping than many other suspension lines, presumably due to the [[downregulation]] of surface adhesion molecules by bcr:abl.<ref>{{cite journal | vauthors = Jongen-Lavrencic M, Salesse S, Delwel R, Verfaillie CM | title = BCR/ABL-mediated downregulation of genes implicated in cell adhesion and motility leads to impaired migration toward CCR7 ligands CCL19 and CCL21 in primary BCR/ABL-positive cells | journal = Leukemia | volume = 19 | issue = 3 | pages = 373–380 | date = March 2005 | pmid = 15674360 | doi = 10.1038/sj.leu.2403626 | doi-access = free }}</ref> However, another study suggests that bcr:abl over-expression may actually increase cell adherence to cell culture plastic.<ref>{{cite journal | vauthors = Karimiani EG, Marriage F, Merritt AJ, Burthem J, Byers RJ, Day PJ | title = Single-cell analysis of K562 cells: an imatinib-resistant subpopulation is adherent and has upregulated expression of BCR-ABL mRNA and protein | journal = Experimental Hematology | volume = 42 | issue = 3 | pages = 183–191.e5 | date = March 2014 | pmid = 24269846 | doi = 10.1016/j.exphem.2013.11.006 }}</ref> K562 cells can spontaneously develop characteristics similar to early-stage [[erythrocytes]], [[granulocytes]] and [[monocytes]]<ref name="lozzio1981"> |
||
{{cite journal | vauthors = Lozzio BB, Lozzio CB, Bamberger EG, Feliu AS | title = A multipotential leukemia cell line (K-562) of human origin | journal = Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine | volume = 166 | issue = 4 | pages = 546–550 | date = April 1981 | pmid = 7194480 | doi = 10.3181/00379727-166-41106 }}</ref> and are easily killed by [[natural killer cells]]<ref name="lozzio1979"> |
|||
{{Citation |
|||
{{cite journal | vauthors = Lozzio BB, Lozzio CB | title = Properties and usefulness of the original K-562 human myelogenous leukemia cell line | journal = Leukemia Research | volume = 3 | issue = 6 | pages = 363–370 | year = 1979 | pmid = 95026 | doi = 10.1016/0145-2126(79)90033-X }}</ref> as they lack the [[Major histocompatibility complex|MHC]] complex required to inhibit NK activity.<ref name="drexler2000" /> They also lack any trace of [[Epstein-Barr virus]] and other herpesviruses. In addition to the [[Philadelphia chromosome]] they also exhibit a second reciprocal translocation between the long arm of [[chromosome 15]] with [[chromosome 17]].<ref name="lozzio75" /> |
|||
| last = Lozzio |
|||
| first = B.B. |
|||
| last2 = Lozzio |
|||
| first2 = C.B. |
|||
| last3 = Bamberger |
|||
| first3 = E.G. |
|||
| last4 = Feliu |
|||
| first4 = A.S. |
|||
| title = A multipotential leukemia cell line (K-562) of human origin |
|||
| year = 1981 |
|||
| doi = 10.3181/00379727-166-41106 |
|||
| journal = Proceedings of the Society for Experimental Biology and Medicine |
|||
| volume = 166 |
|||
| issue = 4 |
|||
| pages = 546–50 |
|||
| pmid = 7194480 |
|||
}}</ref> and are easily killed by [[natural killer cells]]<ref name="lozzio1979"> |
|||
{{Citation |
|||
| last = Lozzio |
|||
| first = B.B. |
|||
| last2 = Lozzio |
|||
| first2 = C.B. |
|||
| title = Properties and usefulness of the original K-562 human myelogenous leukemia cell line |
|||
| year = 1979 |
|||
| doi = 10.1016/0145-2126(79)90033-X |
|||
| journal = Leukemia Research |
|||
| volume = 3 |
|||
| issue = 6 |
|||
| pages = 363–70 |
|||
| pmid = 95026 |
|||
}}</ref> as they lack the [[Major histocompatibility complex|MHC]] complex required to inhibit NK activity.<ref name="drexler2000" /> They also lack any trace of [[Epstein-Barr virus]] and other herpesviruses. In addition to the [[Philadelphia chromosome]] they also exhibit a second reciprocal translocation between the long arm of [[chromosome 15]] with [[chromosome 17]].<ref name="lozzio75" /> |
|||
Two sub-lines are available which express MHC class-I A2<ref name="britten2002"> |
Two sub-lines are available which express MHC class-I A2<ref name="britten2002"> |
||
{{cite journal | vauthors = Britten CM, Meyer RG, Kreer T, Drexler I, Wölfel T, Herr W | title = The use of HLA-A*0201-transfected K562 as standard antigen-presenting cells for CD8(+) T lymphocytes in IFN-gamma ELISPOT assays | journal = Journal of Immunological Methods | volume = 259 | issue = 1-2 | pages = 95–110 | date = January 2002 | pmid = 11730845 | doi = 10.1016/S0022-1759(01)00499-9 }}</ref> and A3.<ref name="clark2001"> |
|||
{{Citation |
|||
{{cite journal | vauthors = Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR, Rojas J, Bourdon A, Bonner PL, Wang L, Christmas SE, Travers PJ, Creaser CS, Rees RC, Madrigal JA | display-authors = 6 | title = Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein | journal = Blood | volume = 98 | issue = 10 | pages = 2887–2893 | date = November 2001 | pmid = 11698267 | doi = 10.1182/blood.V98.10.2887 }}</ref> |
|||
| last = Britten |
|||
| first = C.M. |
|||
| last2 = Meyer |
|||
| first2 = R.G. |
|||
| last3 = Kreer |
|||
| first3 = T. |
|||
| last4 = Drexler |
|||
| first4 = I. |
|||
| last5 = Wölfel |
|||
| first5 = T. |
|||
| last6 = Herr |
|||
| first6 = W. |
|||
| title = The use of HLA-A*0201-transfected K562 as standard antigen-presenting cells for CD8(+) T lymphocytes in IFN-gamma ELISPOT assays |
|||
| year = 2002 |
|||
| doi = 10.1016/S0022-1759(01)00499-9 |
|||
| journal = Journal of Immunological Methods |
|||
| volume = 259 |
|||
| issue = 1–2 |
|||
| pages = 95–110 |
|||
| pmid = 11730845 |
|||
}}</ref> and A3.<ref name="clark2001"> |
|||
{{Citation |
|||
| last = Clark | first = R.E. | last2 = Dodi | first2 = I.A. | last3 = Hill | first3 = S.C. | last4 = Lill | first4 = J.R. | last5 = Aubert | first5 = G. | last6 = Macintyre | first6 = A.R. | last7 = Rojas | first7 = J. | last8 = Bourdon | first8 = A. | last9 = Bonner | first9 = P.L. |
|||
| last10 = Wang | first10 = L | last11 = Christmas | first11 = S. E. | last12 = Travers | first12 = P. J. | last13 = Creaser | first13 = C. S. | last14 = Rees | first14 = R. C. | last15 = Madrigal | first15 = J. A. | title = Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein |
|||
| year = 2001 |
|||
| url =http://discovery.ucl.ac.uk/6966/1/6966.pdf |
|||
| doi = 10.1182/blood.V98.10.2887 |
|||
| journal = Blood |
|||
| volume = 98 |
|||
| issue = 10 |
|||
| pages = 2887–93 |
|||
| pmid = 11698267 |
|||
| display-authors = 8 }}</ref> |
|||
K562 cells are part of the [[NCI-60]] cancer cell line panel used by the [[National Cancer Institute]].<ref> |
K562 cells are part of the [[NCI-60]] cancer cell line panel used by the [[National Cancer Institute]].<ref> |
||
Line 144: | Line 24: | ||
==K562 cell cycle and regulation== |
==K562 cell cycle and regulation== |
||
Many factors and components play a role in the cell cycle of K562 cells in terms of growth, cell differentiation, and apoptosis.<ref name="ReferenceA">{{cite journal| |
Many factors and components play a role in the cell cycle of K562 cells in terms of growth, cell differentiation, and apoptosis.<ref name="ReferenceA">{{cite journal | vauthors = Duncan MT, DeLuca TA, Kuo HY, Yi M, Mrksich M, Miller WM | title = SIRT1 is a critical regulator of K562 cell growth, survival, and differentiation | journal = Experimental Cell Research | volume = 344 | issue = 1 | pages = 40–52 | date = May 2016 | pmid = 27086164 | pmc = 4879089 | doi = 10.1016/j.yexcr.2016.04.010 }}</ref> The growth of these leukemic cells are controlled by either initiating cell differentiation or apoptosis to occur.<ref name="ReferenceB">{{cite journal | vauthors = Yang C, Cai H, Meng X | title = Polyphyllin D induces apoptosis and differentiation in K562 human leukemia cells | journal = International Immunopharmacology | volume = 36 | pages = 17–22 | date = July 2016 | pmid = 27104314 | doi = 10.1016/j.intimp.2016.04.011 }}</ref> |
||
Cell differentiation is induced by the deacetylase activity in these “undifferentiated progenitor cells,” which alters the phenotype and morphology of the K562 cells.<ref name="ReferenceA"/> The change in phenotype induces a decrease in the growth rate and leads the K562 cells to the terminal path of becoming mature erythroids, monocytes, and mature macrophages.<ref name="ReferenceA"/> These changes can also drive the leukemic cells to a state of stress, which allows for increased sensitivity of the cells to drugs that initiate apoptosis.<ref name="ReferenceA"/> |
Cell differentiation is induced by the deacetylase activity in these “undifferentiated progenitor cells,” which alters the phenotype and morphology of the K562 cells.<ref name="ReferenceA"/> The change in phenotype induces a decrease in the growth rate and leads the K562 cells to the terminal path of becoming mature erythroids, monocytes, and mature macrophages.<ref name="ReferenceA"/> These changes can also drive the leukemic cells to a state of stress, which allows for increased sensitivity of the cells to drugs that initiate apoptosis.<ref name="ReferenceA"/> |
||
Line 150: | Line 30: | ||
[[File: Path of K562 Cells from Cancer Causing to Apoptosis Induction.jpg|thumb|Pathway of K562 Cell Differentiation]] |
[[File: Path of K562 Cells from Cancer Causing to Apoptosis Induction.jpg|thumb|Pathway of K562 Cell Differentiation]] |
||
The problem with K562 cells, and many other cancer cell types, is an overabundance of Aurora kinases.<ref name="ReferenceC">{{cite journal| |
The problem with K562 cells, and many other cancer cell types, is an overabundance of Aurora kinases.<ref name="ReferenceC">{{cite journal | vauthors = Fan Y, Lu H, An L, Wang C, Zhou Z, Feng F, Ma H, Xu Y, Zhao Q | display-authors = 6 | title = Effect of active fraction of Eriocaulon sieboldianum on human leukemia K562 cells via proliferation inhibition, cell cycle arrest and apoptosis induction | journal = Environmental Toxicology and Pharmacology | volume = 43 | pages = 13–20 | date = April 2016 | pmid = 26923230 | doi = 10.1016/j.etap.2015.11.001 }}</ref> These kinases play a role in the formation of spindles, separation of chromosomes, as well as cytokinesis.<ref name="ReferenceC"/> These functions are necessary in cells in order to divide and regenerate tissues, and play a maintenance role in homeostatic functions. However, the overabundance of Aurora kinases allows for uncontrolled cellular division, resulting in cancer.<ref name="ReferenceC"/> Inhibiting these is an important regulation mechanism of cancer, because it prevents cells from progressing into mitosis.<ref name="ReferenceC"/> |
||
[[File:Cell_Cycle_with_Key_Components_for_K562_Cell_Growth_Regulation_Involved.jpg|thumb|Cell Cycle Tailored to K562 Cell Growth and Regulation]] |
[[File:Cell_Cycle_with_Key_Components_for_K562_Cell_Growth_Regulation_Involved.jpg|thumb|Cell Cycle Tailored to K562 Cell Growth and Regulation]] |
||
Apoptosis is an important mechanism in regulating K562 cells and can be induced by the changes in the metabolic state of the cells.<ref name="ReferenceA"/> There are many different cellular components involved in the cycle of apoptosis such as BCR/ABL, Bcl-2, Bax protein, and cytochrome C.<ref name="ReferenceB"/> The tumor suppressor gene p53 is also important in the cell cycle regulation of K562 cells.<ref name="ReferenceD">{{cite journal| |
Apoptosis is an important mechanism in regulating K562 cells and can be induced by the changes in the metabolic state of the cells.<ref name="ReferenceA"/> There are many different cellular components involved in the cycle of apoptosis such as BCR/ABL, Bcl-2, Bax protein, and cytochrome C.<ref name="ReferenceB"/> The tumor suppressor gene p53 is also important in the cell cycle regulation of K562 cells.<ref name="ReferenceD">{{cite journal | vauthors = Chylicki K, Ehinger M, Svedberg H, Bergh G, Olsson I, Gullberg U | title = p53-mediated differentiation of the erythroleukemia cell line K562 | journal = Cell Growth & Differentiation | volume = 11 | issue = 6 | pages = 315–324 | date = June 2000 | pmid = 10910098 }}</ref> This gene targets the cyclin-dependent kinase inhibitor, p21, and causes cell differentiation, cell cycle arrest in G1, and ultimately apoptosis.<ref name="ReferenceD"/> When the levels of these components are thrown off, they can either no longer inhibit apoptosis of the cancer cells, a role fulfilled by BCR/ABL, or they cause apoptosis to be induced, in the same vein as Bax and cytochrome C.<ref name="ReferenceB"/> These components are key in the mitochondria, and due to this, it has been supported that apoptosis uses the mitochondrial apoptosis pathway.<ref name="ReferenceB"/> The offset of these cellular components from their balance point causes morphological changes, which result in the K562 cells being arrested in the G2/M phase of the cell cycle.<ref name="ReferenceB"/> This arrest leads to “shrinkage, blebbing, nuclear fragmentation, chromatin condensing” and other morphological changes that cause the cell to program death at this point.<ref name="ReferenceB"/> |
||
The ability to induce these changes in K562 cell cycle and cell cycle regulation provides targets for cancer drugs.<ref name="ReferenceE">{{cite journal| |
The ability to induce these changes in K562 cell cycle and cell cycle regulation provides targets for cancer drugs.<ref name="ReferenceE">{{cite journal | vauthors = Wang J, Li Q, Wang C, Xiong Q, Lin Y, Sun Q, Jin H, Yang F, Ren X, Pang T | display-authors = 6 | title = Knock-down of CIAPIN1 sensitizes K562 chronic myeloid leukemia cells to Imatinib by regulation of cell cycle and apoptosis-associated members via NF-κB and ERK5 signaling pathway | journal = Biochemical Pharmacology | volume = 99 | pages = 132–145 | date = January 2016 | pmid = 26679828 | doi = 10.1016/j.bcp.2015.12.002 }}</ref> One of these drugs is Imatinib, which inhibits BCR/ABL causing growth to cease and apoptosis to begin.<ref name="ReferenceE"/> Another important group of regulators of the K562 line are Sirtuins, referred to as SIRTS.<ref name="ReferenceA"/> These play a role in cellular stress, metabolism, and autophagy, by interacting with deacetylases activity in the cell.<ref name="ReferenceA"/> Other methods being focused on in the regulation of K562 cells include therapeutic methods like polyphyllin D, which caused differentiation from the progenitor state to occur, and for apoptosis to begin.<ref name="ReferenceB"/> |
||
==External links== |
== External links == |
||
* {{MeshNumber|A11.251.210.770.510|K562+Cells}} |
* {{MeshNumber|A11.251.210.770.510|K562+Cells}} |
||
*[https://web.expasy.org/cellosaurus/CVCL_0004 Cellosaurus entry for K562] |
*[https://web.expasy.org/cellosaurus/CVCL_0004 Cellosaurus entry for K562] |
||
==References== |
== References == |
||
{{Reflist}} |
{{Reflist}} |
||
Revision as of 11:49, 21 October 2021
K562 cells were the first human immortalised myelogenous leukemia cell line to be established. K562 cells are of the erythroleukemia type, and the cell line is derived from a 53-year-old female chronic myelogenous leukemia patient in blast crisis.[1][2] The cells are non-adherent and rounded, are positive for the bcr:abl fusion gene, and bear some proteomic resemblance to both undifferentiated granulocytes[3] and erythrocytes.[4]
In culture they exhibit much less clumping than many other suspension lines, presumably due to the downregulation of surface adhesion molecules by bcr:abl.[5] However, another study suggests that bcr:abl over-expression may actually increase cell adherence to cell culture plastic.[6] K562 cells can spontaneously develop characteristics similar to early-stage erythrocytes, granulocytes and monocytes[7] and are easily killed by natural killer cells[8] as they lack the MHC complex required to inhibit NK activity.[2] They also lack any trace of Epstein-Barr virus and other herpesviruses. In addition to the Philadelphia chromosome they also exhibit a second reciprocal translocation between the long arm of chromosome 15 with chromosome 17.[1]
Two sub-lines are available which express MHC class-I A2[9] and A3.[10]
K562 cells are part of the NCI-60 cancer cell line panel used by the National Cancer Institute.[11]
K562 cell cycle and regulation
Many factors and components play a role in the cell cycle of K562 cells in terms of growth, cell differentiation, and apoptosis.[12] The growth of these leukemic cells are controlled by either initiating cell differentiation or apoptosis to occur.[13]
Cell differentiation is induced by the deacetylase activity in these “undifferentiated progenitor cells,” which alters the phenotype and morphology of the K562 cells.[12] The change in phenotype induces a decrease in the growth rate and leads the K562 cells to the terminal path of becoming mature erythroids, monocytes, and mature macrophages.[12] These changes can also drive the leukemic cells to a state of stress, which allows for increased sensitivity of the cells to drugs that initiate apoptosis.[12]
The problem with K562 cells, and many other cancer cell types, is an overabundance of Aurora kinases.[14] These kinases play a role in the formation of spindles, separation of chromosomes, as well as cytokinesis.[14] These functions are necessary in cells in order to divide and regenerate tissues, and play a maintenance role in homeostatic functions. However, the overabundance of Aurora kinases allows for uncontrolled cellular division, resulting in cancer.[14] Inhibiting these is an important regulation mechanism of cancer, because it prevents cells from progressing into mitosis.[14]
Apoptosis is an important mechanism in regulating K562 cells and can be induced by the changes in the metabolic state of the cells.[12] There are many different cellular components involved in the cycle of apoptosis such as BCR/ABL, Bcl-2, Bax protein, and cytochrome C.[13] The tumor suppressor gene p53 is also important in the cell cycle regulation of K562 cells.[15] This gene targets the cyclin-dependent kinase inhibitor, p21, and causes cell differentiation, cell cycle arrest in G1, and ultimately apoptosis.[15] When the levels of these components are thrown off, they can either no longer inhibit apoptosis of the cancer cells, a role fulfilled by BCR/ABL, or they cause apoptosis to be induced, in the same vein as Bax and cytochrome C.[13] These components are key in the mitochondria, and due to this, it has been supported that apoptosis uses the mitochondrial apoptosis pathway.[13] The offset of these cellular components from their balance point causes morphological changes, which result in the K562 cells being arrested in the G2/M phase of the cell cycle.[13] This arrest leads to “shrinkage, blebbing, nuclear fragmentation, chromatin condensing” and other morphological changes that cause the cell to program death at this point.[13]
The ability to induce these changes in K562 cell cycle and cell cycle regulation provides targets for cancer drugs.[16] One of these drugs is Imatinib, which inhibits BCR/ABL causing growth to cease and apoptosis to begin.[16] Another important group of regulators of the K562 line are Sirtuins, referred to as SIRTS.[12] These play a role in cellular stress, metabolism, and autophagy, by interacting with deacetylases activity in the cell.[12] Other methods being focused on in the regulation of K562 cells include therapeutic methods like polyphyllin D, which caused differentiation from the progenitor state to occur, and for apoptosis to begin.[13]
External links
References
- ^ a b Lozzio CB, Lozzio BB (March 1975). "Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome". Blood. 45 (3): 321–334. PMID 163658.
- ^ a b Drexler HG (2000). The Leukemia-Lymphoma Cell Line Factsbook. San Diego: Academic Press.
- ^ Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, Vánky F (October 1976). "Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia". International Journal of Cancer. 18 (4): 421–431. doi:10.1002/ijc.2910180405. PMID 789258.
- ^ Andersson LC, Nilsson K, Gahmberg CG (February 1979). "K562--a human erythroleukemic cell line". International Journal of Cancer. 23 (2): 143–147. doi:10.1002/ijc.2910230202. PMID 367973.
- ^ Jongen-Lavrencic M, Salesse S, Delwel R, Verfaillie CM (March 2005). "BCR/ABL-mediated downregulation of genes implicated in cell adhesion and motility leads to impaired migration toward CCR7 ligands CCL19 and CCL21 in primary BCR/ABL-positive cells". Leukemia. 19 (3): 373–380. doi:10.1038/sj.leu.2403626. PMID 15674360.
- ^ Karimiani EG, Marriage F, Merritt AJ, Burthem J, Byers RJ, Day PJ (March 2014). "Single-cell analysis of K562 cells: an imatinib-resistant subpopulation is adherent and has upregulated expression of BCR-ABL mRNA and protein". Experimental Hematology. 42 (3): 183–191.e5. doi:10.1016/j.exphem.2013.11.006. PMID 24269846.
- ^ Lozzio BB, Lozzio CB, Bamberger EG, Feliu AS (April 1981). "A multipotential leukemia cell line (K-562) of human origin". Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine. 166 (4): 546–550. doi:10.3181/00379727-166-41106. PMID 7194480.
- ^ Lozzio BB, Lozzio CB (1979). "Properties and usefulness of the original K-562 human myelogenous leukemia cell line". Leukemia Research. 3 (6): 363–370. doi:10.1016/0145-2126(79)90033-X. PMID 95026.
- ^ Britten CM, Meyer RG, Kreer T, Drexler I, Wölfel T, Herr W (January 2002). "The use of HLA-A*0201-transfected K562 as standard antigen-presenting cells for CD8(+) T lymphocytes in IFN-gamma ELISPOT assays". Journal of Immunological Methods. 259 (1–2): 95–110. doi:10.1016/S0022-1759(01)00499-9. PMID 11730845.
- ^ Clark RE, Dodi IA, Hill SC, Lill JR, Aubert G, Macintyre AR, et al. (November 2001). "Direct evidence that leukemic cells present HLA-associated immunogenic peptides derived from the BCR-ABL b3a2 fusion protein". Blood. 98 (10): 2887–2893. doi:10.1182/blood.V98.10.2887. PMID 11698267.
- ^
"Cellosaurus K-562 (CVCL_0004)". Cellosaurus. SIB Swiss Institute of Bioinformatics. Retrieved 7 January 2018.
Part of: NCI60 cancer cell line panel.
- ^ a b c d e f g Duncan MT, DeLuca TA, Kuo HY, Yi M, Mrksich M, Miller WM (May 2016). "SIRT1 is a critical regulator of K562 cell growth, survival, and differentiation". Experimental Cell Research. 344 (1): 40–52. doi:10.1016/j.yexcr.2016.04.010. PMC 4879089. PMID 27086164.
- ^ a b c d e f g Yang C, Cai H, Meng X (July 2016). "Polyphyllin D induces apoptosis and differentiation in K562 human leukemia cells". International Immunopharmacology. 36: 17–22. doi:10.1016/j.intimp.2016.04.011. PMID 27104314.
- ^ a b c d Fan Y, Lu H, An L, Wang C, Zhou Z, Feng F, et al. (April 2016). "Effect of active fraction of Eriocaulon sieboldianum on human leukemia K562 cells via proliferation inhibition, cell cycle arrest and apoptosis induction". Environmental Toxicology and Pharmacology. 43: 13–20. doi:10.1016/j.etap.2015.11.001. PMID 26923230.
- ^ a b Chylicki K, Ehinger M, Svedberg H, Bergh G, Olsson I, Gullberg U (June 2000). "p53-mediated differentiation of the erythroleukemia cell line K562". Cell Growth & Differentiation. 11 (6): 315–324. PMID 10910098.
- ^ a b Wang J, Li Q, Wang C, Xiong Q, Lin Y, Sun Q, et al. (January 2016). "Knock-down of CIAPIN1 sensitizes K562 chronic myeloid leukemia cells to Imatinib by regulation of cell cycle and apoptosis-associated members via NF-κB and ERK5 signaling pathway". Biochemical Pharmacology. 99: 132–145. doi:10.1016/j.bcp.2015.12.002. PMID 26679828.