Jump to content

Statistical distance: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Koalaware (talk | contribs)
m wording
m v2.04 - Repaired 1 link to disambiguation page - (You can help) - Probability distribution function, 1 to be fixed - Discrepancy (disambiguation)
Line 43: Line 43:
** [[Distance correlation]] is a measure of dependence between two [[random variables]], it is zero if and only if the random variables are independent.
** [[Distance correlation]] is a measure of dependence between two [[random variables]], it is zero if and only if the random variables are independent.
* The ''continuous ranked probability score'' measures how well forecasts that are expressed as probability distributions match observed outcomes. Both the location and spread of the forecast distribution are taken into account in judging how close the distribution is the observed value: see [[probabilistic forecasting]].
* The ''continuous ranked probability score'' measures how well forecasts that are expressed as probability distributions match observed outcomes. Both the location and spread of the forecast distribution are taken into account in judging how close the distribution is the observed value: see [[probabilistic forecasting]].
* [[Łukaszyk–Karmowski metric]] is a function defining a distance between two [[random variable]]s or two [[random vector]]s. It does not satisfy the [[identity of indiscernibles]] condition of the metric and is zero if and only if both its arguments are certain events described by [[Dirac delta]] density [[probability distribution function]]s.
* [[Łukaszyk–Karmowski metric]] is a function defining a distance between two [[random variable]]s or two [[random vector]]s. It does not satisfy the [[identity of indiscernibles]] condition of the metric and is zero if and only if both its arguments are certain events described by [[Dirac delta]] density [[Probability density function|probability distribution function]]s.


== See also ==
== See also ==

Revision as of 20:59, 2 November 2021

In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.

A distance between populations can be interpreted as measuring the distance between two probability distributions and hence they are essentially measures of distances between probability measures. Where statistical distance measures relate to the differences between random variables, these may have statistical dependence,[1] and hence these distances are not directly related to measures of distances between probability measures. Again, a measure of distance between random variables may relate to the extent of dependence between them, rather than to their individual values.

Statistical distance measures are not typically metrics, and they need not be symmetric. Some types of distance measures are referred to as (statistical) divergences.

Terminology

Many terms are used to refer to various notions of distance; these are often confusingly similar, and may be used inconsistently between authors and over time, either loosely or with precise technical meaning. In addition to "distance", similar terms include deviance, deviation, discrepancy, discrimination, and divergence, as well as others such as contrast function and metric. Terms from information theory include cross entropy, relative entropy, discrimination information, and information gain.

Distances as metrics

Metrics

A metric on a set X is a function (called the distance function or simply distance) d : X × XR+ (where R+ is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions:

  1. d(x, y) ≥ 0     (non-negativity)
  2. d(x, y) = 0   if and only if   x = y     (identity of indiscernibles. Note that condition 1 and 2 together produce positive definiteness)
  3. d(x, y) = d(y, x)     (symmetry)
  4. d(x, z) ≤ d(x, y) + d(y, z)     (subadditivity / triangle inequality).

Generalized metrics

Many statistical distances are not metrics, because they lack one or more properties of proper metrics. For example, pseudometrics violate the "positive definiteness" (alternatively, "identity of indescernibles") property (1 & 2 above); quasimetrics violate the symmetry property (3); and semimetrics violate the triangle inequality (4). Statistical distances that satisfy (1) and (2) are referred to as divergences.

Examples

Some important statistical distances include the following:

See also

Notes

  1. ^ Dodge, Y. (2003)—entry for distance

References

  • Dodge, Y. (2003) Oxford Dictionary of Statistical Terms, OUP. ISBN 0-19-920613-9