Jump to content

Centered polygonal number: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Restored revision 1026536977 by 71.86.195.94 (talk): Rv User:Xayahrainie43
Tags: Twinkle Undo Reverted
No edit summary
Line 1: Line 1:
{{short description|class of series of figurate numbers, each formed by a central dot}}
{{Use American English|date=March 2021}}
{{Use mdy dates|date=March 2021}}

The '''centered polygonal numbers''' are a class of series of [[figurate number]]s, each formed by a central dot, surrounded by polygonal layers with a constant number of sides. Each side of a polygonal layer contains one dot more than a side in the previous layer, so starting from the second polygonal layer each layer of a centered ''k''-gonal number contains ''k'' more points than the previous layer.
The '''centered polygonal numbers''' are a class of series of [[figurate number]]s, each formed by a central dot, surrounded by polygonal layers with a constant number of sides. Each side of a polygonal layer contains one dot more than a side in the previous layer, so starting from the second polygonal layer each layer of a centered ''k''-gonal number contains ''k'' more points than the previous layer.


Line 101: Line 97:


:<math>\frac{\pi^2}{8}</math>, if ''k'' = 8
:<math>\frac{\pi^2}{8}</math>, if ''k'' = 8

== Table of formulae and values ==

Centered polygonal numbers associated with [[constructible polygons]] (Cf. A003401) (with straightedge and compass) are named in '''bold'''.

<!--== Wikitable color scheme is: [background: #f2f2f2; for table header] [background: #f9f9f9; for table cells] ==-->
{| class="wikitable" align="center" border="1" cellspacing="0" cellpadding="4" style="border-collapse: collapse; border: 1px solid darkgray; background: #f9f9f9; color: black; empty-cells: show; text-align: right;"
|+ '''Centered polygonal numbers formulae and values'''
|- style="background: #f2f2f2; color: black; text-align: center;"
! width="25" style="text-align: center;" | ''N''<sub>0</sub>
! style="text-align: center;" | Name
! style="text-align: center;" | Formulae

<math>\,_cP^{(2)}_{N_0}(n)</math>
! width="50" align="center" | ''n'' = 0
! width="50" align="center" | 1
! width="50" align="center" | 2
! width="50" align="center" | 3
! width="50" align="center" | 4
! width="50" align="center" | 5
! width="50" align="center" | 6
! width="50" align="center" | 7
! width="50" align="center" | 8
! width="50" align="center" | 9
! width="50" align="center" | 10
! width="50" align="center" | 11
! width="75" style="text-align: center;" | OEIS
number
|-
| align="center" | '''3'''
| align="left" | [[Centered triangular number|'''Centered triangular''']]
| align="center" | <math>3T_n+1\,</math>
<math>3n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 4
| align="right" | 10
| align="right" | 19
| align="right" | 31
| align="right" | 46
| align="right" | 64
| align="right" | 85
| align="right" | 109
| align="right" | 136
| align="right" | 166
| align="right" | 199
| align="center" | A005448('''''n'''''+1)
|-
| align="center" | '''4'''
| align="left" | [[Centered square number|'''Centered square''']]
| align="center" | <math>4T_n+1\,</math>
<math>2n(n+1)+1\,</math>

<math>n^2+(n+1)^2\,</math>
| align="right" | 1
| align="right" | 5
| align="right" | 13
| align="right" | 25
| align="right" | 41
| align="right" | 61
| align="right" | 85
| align="right" | 113
| align="right" | 145
| align="right" | 181
| align="right" | 221
| align="right" | 265
| align="center" | A001844('''''n''''')
|-
| align="center" | '''5'''
| align="left" | [[Centered pentagonal number|'''Centered pentagonal''']]
| align="center" | <math>5T_n+1\,</math>
<math>5n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 6
| align="right" | 16
| align="right" | 31
| align="right" | 51
| align="right" | 76
| align="right" | 106
| align="right" | 141
| align="right" | 181
| align="right" | 226
| align="right" | 276
| align="right" | 331
| align="center" | A005891('''''n''''')
|-
| align="center" | '''6'''
| align="left" | [[Centered hexagonal number|'''Centered hexagonal''']]

[[Hex numbers|'''Hex numbers''']]
| align="center" | <math>6T_n+1\,</math>
<math>3n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 7
| align="right" | 19
| align="right" | 37
| align="right" | 61
| align="right" | 91
| align="right" | 127
| align="right" | 169
| align="right" | 217
| align="right" | 271
| align="right" | 331
| align="right" | 397
| align="center" | A003215('''''n''''')
|-
| align="center" | 7
| align="left" | [[Centered heptagonal number|Centered heptagonal]]
| align="center" | <math>7T_n+1\,</math>
<math>7n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 8
| align="right" | 22
| align="right" | 43
| align="right" | 71
| align="right" | 106
| align="right" | 148
| align="right" | 197
| align="right" | 253
| align="right" | 316
| align="right" | 386
| align="right" | 463
| align="center" | A069099('''''n'''''+1)
|-
| align="center" | '''8'''
| align="left" | [[Centered octagonal number|'''Centered octagonal''']]
| align="center" | <math>8T_n+1\,</math>
<math>4n(n+1)+1\,</math>

<math>(2n+1)^2\,</math>

[[Odd squares]]
| align="right" | 1
| align="right" | 9
| align="right" | 25
| align="right" | 49
| align="right" | 81
| align="right" | 121
| align="right" | 169
| align="right" | 225
| align="right" | 289
| align="right" | 361
| align="right" | 441
| align="right" | 529
| align="center" | A016754('''''n''''')
|-
| align="center" | 9
| align="left" | [[Centered nonagonal number|Centered nonagonal]]
| align="center" | <math>9T_n+1\,</math>
<math>9n(n+1)/2+1\,</math>

<math>t_{3n+1}\,</math>

<math>\binom{3n+2}{2}</math>
| align="right" | 1
| align="right" | 10
| align="right" | 28
| align="right" | 55
| align="right" | 91
| align="right" | 136
| align="right" | 190
| align="right" | 253
| align="right" | 325
| align="right" | 406
| align="right" | 496
| align="right" | 595
| align="center" | A060544('''''n'''''+1)
|-
| align="center" | '''10'''
| align="left" | '''[[Centered decagonal number|Centered decagonal]]'''
| align="center" | <math>10T_n+1\,</math>
<math>5n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 11
| align="right" | 31
| align="right" | 61
| align="right" | 101
| align="right" | 151
| align="right" | 211
| align="right" | 281
| align="right" | 361
| align="right" | 451
| align="right" | 551
| align="right" | 661
| align="center" | A062786('''''n'''''+1)
|-
| align="center" | 11
| align="left" | [[Centered hendecagonal number|Centered hendecagonal]]
| align="center" | <math>11T_n+1\,</math>
<math>11n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 12
| align="right" | 34
| align="right" | 67
| align="right" | 111
| align="right" | 166
| align="right" | 232
| align="right" | 309
| align="right" | 397
| align="right" | 496
| align="right" | 606
| align="right" | 727
| align="center" | A069125('''''n'''''+1)
|-
| align="center" | '''12'''
| align="left" | [[Centered dodecagonal number|'''Centered dodecagonal''']]
| align="center" | <math>12T_n+1\,</math>
<math>6n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 13
| align="right" | 37
| align="right" | 73
| align="right" | 121
| align="right" | 181
| align="right" | 253
| align="right" | 337
| align="right" | 433
| align="right" | 541
| align="right" | 661
| align="right" | 793
| align="center" | A003154('''''n'''''+1)
|-
| align="center" | 13
| align="left" | [[Centered tridecagonal number|Centered tridecagonal]]
| align="center" | <math>13T_n+1\,</math>
<math>13n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 14
| align="right" | 40
| align="right" | 79
| align="right" | 131
| align="right" | 196
| align="right" | 274
| align="right" | 365
| align="right" | 469
| align="right" | 586
| align="right" | 716
| align="right" | 859
| align="center" | A069126('''''n'''''+1)
|-
| align="center" | 14
| align="left" | [[Centered tetradecagonal number|Centered tetradecagonal]]
| align="center" | <math>14T_n+1\,</math>
<math>7n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 15
| align="right" | 43
| align="right" | 85
| align="right" | 141
| align="right" | 211
| align="right" | 295
| align="right" | 393
| align="right" | 505
| align="right" | 631
| align="right" | 771
| align="right" | 925
| align="center" | A069127('''''n'''''+1)
|-
| align="center" | '''15'''
| align="left" | [[Centered pentadecagonal number|'''Centered pentadecagonal''']]
| align="center" | <math>15T_n+1\,</math>
<math>15n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 16
| align="right" | 46
| align="right" | 91
| align="right" | 151
| align="right" | 226
| align="right" | 316
| align="right" | 421
| align="right" | 541
| align="right" | 676
| align="right" | 826
| align="right" | 991
| align="center" | A069128('''''n'''''+1)
|-
| align="center" | '''16'''
| align="left" | [[Centered hexadecagonal number|'''Centered hexadecagonal''']]
| align="center" | <math>16T_n+1\,</math>
<math>8n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 17
| align="right" | 49
| align="right" | 97
| align="right" | 161
| align="right" | 241
| align="right" | 337
| align="right" | 449
| align="right" | 577
| align="right" | 721
| align="right" | 881
| align="right" | 1057
| align="center" | A069129('''''n'''''+1)
|-
| align="center" | '''17'''
| align="left" | [[Centered heptadecagonal number|'''Centered heptadecagonal''']]
| align="center" | <math>17T_n+1\,</math>
<math>17n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 18
| align="right" | 52
| align="right" | 103
| align="right" | 171
| align="right" | 256
| align="right" | 358
| align="right" | 477
| align="right" | 613
| align="right" | 766
| align="right" | 936
| align="right" | 1123
| align="center" | A069130('''''n'''''+1)
|-
| align="center" | 18
| align="left" | [[Centered octadecagonal number|Centered octadecagonal]]
| align="center" | <math>18T_n+1\,</math>
<math>9n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 19
| align="right" | 55
| align="right" | 109
| align="right" | 181
| align="right" | 271
| align="right" | 379
| align="right" | 505
| align="right" | 649
| align="right" | 811
| align="right" | 991
| align="right" | 1189
| align="center" | A069131('''''n'''''+1)
|-
| align="center" | 19
| align="left" | [[Centered nonadecagonal number|Centered nonadecagonal]]
| align="center" | <math>19T_n+1\,</math>
<math>19n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 20
| align="right" | 58
| align="right" | 115
| align="right" | 191
| align="right" | 286
| align="right" | 400
| align="right" | 533
| align="right" | 685
| align="right" | 856
| align="right" | 1046
| align="right" | 1255
| align="center" | A069132('''''n'''''+1)
|-
| align="center" | '''20'''
| align="left" | [[Centered icosagonal number|'''Centered icosagonal''']]
| align="center" | <math>20T_n+1\,</math>
<math>10n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 21
| align="right" | 61
| align="right" | 121
| align="right" | 201
| align="right" | 301
| align="right" | 421
| align="right" | 561
| align="right" | 721
| align="right" | 901
| align="right" | 1101
| align="right" | 1321
| align="center" | A069133('''''n'''''+1)
|-
| align="center" | 21
| align="left" | [[Centered icosihenagonal number|Centered icosihenagonal]]
| align="center" | <math>21T_n+1\,</math>
<math>21n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 22
| align="right" | 64
| align="right" | 127
| align="right" | 211
| align="right" | 316
| align="right" | 442
| align="right" | 589
| align="right" | 757
| align="right" | 946
| align="right" | 1156
| align="right" | 1387
| align="center" | A069178('''''n'''''+1)
|-
| align="center" | 22
| align="left" | [[Centered icosidigonal number|Centered icosidigonal]]
| align="center" | <math>22T_n+1\,</math>
<math>11n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 23
| align="right" | 67
| align="right" | 133
| align="right" | 221
| align="right" | 331
| align="right" | 463
| align="right" | 617
| align="right" | 793
| align="right" | 991
| align="right" | 1211
| align="right" | 1453
| align="center" | A069173('''''n'''''+1)
|-
| align="center" | 23
| align="left" | [[Centered icositrigonal number|Centered icositrigonal]]
| align="center" | <math>23T_n+1\,</math>
<math>23n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 24
| align="right" | 70
| align="right" | 139
| align="right" | 231
| align="right" | 346
| align="right" | 484
| align="right" | 645
| align="right" | 829
| align="right" | 1036
| align="right" | 1266
| align="right" | 1519
| align="center" | A069174('''''n'''''+1)
|-
| align="center" | '''24'''
| align="left" | [[Centered icositetragonal number|'''Centered icositetragonal''']]
| align="center" | <math>24T_n+1\,</math>
<math>12n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 25
| align="right" | 73
| align="right" | 145
| align="right" | 241
| align="right" | 361
| align="right" | 505
| align="right" | 673
| align="right" | 865
| align="right" | 1081
| align="right" | 1321
| align="right" | 1585
| align="center" | A069190('''''n'''''+1)
|-
| align="center" | 25
| align="left" | [[Centered icosipentagonal number|Centered icosipentagonal]]
| align="center" | <math>25T_n+1\,</math>
<math>25n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 26
| align="right" | 76
| align="right" | 151
| align="right" | 251
| align="right" | 376
| align="right" | 526
| align="right" | 701
| align="right" | 901
| align="right" | 1126
| align="right" | 1376
| align="right" | 1651
| align="center" | [[OEIS:A??????]]
|-
| align="center" | 26
| align="left" | [[Centered Icosihexagonal number|Centered icosihexagonal]]
| align="center" | <math>26T_n+1\,</math>
<math>13n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 27
| align="right" | 79
| align="right" | 157
| align="right" | 261
| align="right" | 391
| align="right" | 547
| align="right" | 729
| align="right" | 937
| align="right" | 1171
| align="right" | 1431
| align="right" | 1717
| align="center" | [[OEIS:A??????]]
|-
| align="center" | 27
| align="left" | [[Centered icosiheptagonal number|Centered icosiheptagonal]]
| align="center" | <math>27T_n+1\,</math>
<math>27n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 28
| align="right" | 82
| align="right" | 163
| align="right" | 271
| align="right" | 406
| align="right" | 568
| align="right" | 757
| align="right" | 973
| align="right" | 1216
| align="right" | 1486
| align="right" | 1783
| align="center" | [[OEIS:A??????]]
|-
| align="center" | 28
| align="left" | [[Centered icosioctagonal number|Centered icosioctagonal]]
| align="center" | <math>28T_n+1\,</math>
<math>14n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 29
| align="right" | 85
| align="right" | 169
| align="right" | 281
| align="right" | 421
| align="right" | 589
| align="right" | 785
| align="right" | 1009
| align="right" | 1261
| align="right" | 1541
| align="right" | 1849
| align="center" | [[OEIS:A??????]]
|-
| align="center" | 29
| align="left" | [[Centered icosinonagonal number|Centered icosinonagonal]]
| align="center" | <math>29T_n+1\,</math>
<math>29n(n+1)/2+1\,</math>
| align="right" | 1
| align="right" | 30
| align="right" | 88
| align="right" | 175
| align="right" | 291
| align="right" | 436
| align="right" | 610
| align="right" | 813
| align="right" | 1045
| align="right" | 1306
| align="right" | 1596
| align="right" | 1915
| align="center" | [[OEIS:A??????]]
|-
| align="center" | '''30'''
| align="left" | [[Centered triacontagonal number|'''Centered triacontagonal''']]
| align="center" | <math>30T_n+1\,</math>
<math>15n(n+1)+1\,</math>
| align="right" | 1
| align="right" | 31
| align="right" | 91
| align="right" | 181
| align="right" | 301
| align="right" | 451
| align="right" | 631
| align="right" | 841
| align="right" | 1081
| align="right" | 1351
| align="right" | 1651
| align="right" | 1981
| align="center" | [[OEIS:A??????]]
|-
|}
<br />

== Table of related formulae and values ==

Centered polygonal numbers associated with [[constructible polygons]] (Cf. A003401) (with straightedge and compass) are named in '''bold'''.

<!--== Wikitable color scheme is: [background: #f2f2f2; for table header] [background: #f9f9f9; for table cells] ==-->
{| class="wikitable" align="center" border="1" cellspacing="0" cellpadding="4" style="border-collapse: collapse; border: 1px solid darkgray; background: #f9f9f9; color: black; empty-cells: show; text-align: right;"
|+ '''Centered polygonal numbers related formulae and values'''
|- style="background: #f2f2f2; color: black; text-align: center;"
! width="25" style="text-align: center;" | ''N''<sub>0</sub>
! style="text-align: center;" | Name
! style="text-align: center;" | Generating

function

<math>G_{\{\,_cP^{(2)}_{N_0}(n)\}}(x) =\,</math>


<math>{{x^2+(N_0-2)x+1}\over{(1-x)^3}}\,</math>
! style="text-align: center;" | Order

of basis

<math>g_{\{\,_cP^{(2)}_{N_0}\}}\,</math>
! align="center" | Differences

<math>\,_cP^{(2)}_{N_0}(n) - \,</math>

<math>\,_cP^{(2)}_{N_0}(n-1) =\,</math>


<math>N_0\ n\,</math>
! align="center" | Partial sums

<math>\sum_{n=0}^m {\,_cP^{(2)}_{N_0}(n)} =</math>


<math>N_0 \binom{m+2}{3} + m\,</math>


<math>N_0\ P^{(3)}_{4}(m) + m\,</math>
! align="center" | Partial sums of reciprocals

<math>\sum_{n=0}^m {1\over{\,_cP^{(2)}_{N_0}(n)}} =</math>
! align="center" | Sum of Reciprocals<ref>Downey, Lawrence M., Ong, Boon W., and Sellers, James A., [http://www.math.psu.edu/sellersj/downey_ong_sellers_cmj_preprint.pdf Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers], 2008.</ref>
<math>\sum_{n=0}^\infty{1\over{\,_cP^{(2)}_{N_0}(n)}} =</math>


<math>\scriptstyle {\frac{2\pi}{N_0 \sqrt{1-\tfrac{8}{N_0}}} \tan{\big( \frac{\pi}{2} \sqrt{1-\tfrac{8}{N_0}} \big)}},\,</math>

<math>\scriptstyle N_0 \neq 8,\,</math>

<math>\frac{\pi^2}{8},\ N_0 = 8.\,</math>
|-
| align="center" | '''3'''
| align="left" | [[Centered triangular numbers|'''Centered triangular''']]
| align="center" | <math>{x^2+x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>3n\,</math>
| align="center" | <math>3 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | '''4'''
| align="left" | [[Centered square numbers|'''Centered square''']]
| align="center" | <math>{x^2+2x+1}\over{(1-x)^3}\,</math>

<math>{(x+1)^2}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>4n\,</math>
| align="center" | <math>4 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{\pi}{2} \tanh\bigg(\frac{\pi}{2}\bigg)\,</math>
|-
| align="center" | '''5'''
| align="left" | [[Centered pentagonal numbers|'''Centered pentagonal''']]
| align="center" | <math>{x^2+3x+1}\over{(1-x)^3}\,</math> <!-- <ref>[http://www.wolframalpha.com/input/?i=%28x^2%2B%283%29x%2B1%29%2F%281-x%29^3 <math>\scriptstyle {{x^2+3x+1}\over{(1-x)^3}}\,</math>], Wolfram Alpha.</ref> -->
| align="center" | <math>\,</math>
| align="center" | <math>5n\,</math>
| align="center" | <math>5 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | '''6'''
| align="left" | [[Centered hexagonal numbers|'''Centered hexagonal''']]
| align="center" | <math>{x^2+4x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>6n\,</math>
| align="center" | <math>6 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{\pi}{\sqrt{3}} \tanh\bigg(\frac{\pi}{2 \sqrt{3}}\bigg)\,</math>
|-
| align="center" | 7
| align="left" | [[Centered heptagonal numbers|Centered heptagonal]]
| align="center" | <math>{x^2+5x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>7n\,</math>
| align="center" | <math>7 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{2\pi}{\sqrt{7}} \tanh\bigg(\frac{\pi}{2 \sqrt{7}}\bigg)\,</math>
|-
| align="center" | '''8'''
| align="left" | [[Centered octagonal numbers|'''Centered octagonal''']]
| align="center" | <math>{x^2+6x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>8n\,</math>
| align="center" | <math>8 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{\pi^2}{8}\,</math>
|-
| align="center" | 9
| align="left" | [[Centered nonagonal numbers|Centered nonagonal]]
| align="center" | <math>{x^2+7x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>9n\,</math>
| align="center" | <math>9 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{2\pi}{3} \tan\bigg(\frac{\pi}{6}\bigg)\,</math>
|-
| align="center" | '''10'''
| align="left" | [[Centered decagonal numbers|'''Centered decagonal''']]
| align="center" | <math>{x^2+8x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>10n\,</math>
| align="center" | <math>10 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{\pi}{\sqrt{5}} \tan\bigg(\frac{\pi}{2 \sqrt{5}}\bigg)\,</math>
|-
| align="center" | 11
| align="left" | [[Centered hendecagonal numbers|Centered hendecagonal]]
| align="center" | <math>{x^2+9x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>11n\,</math>
| align="center" | <math>11 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | '''12'''
| align="left" | [[Centered dodecagonal numbers|'''Centered dodecagonal''']]
| align="center" | <math>{x^2+10x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>12n\,</math>
| align="center" | <math>12 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{\pi}{2\sqrt{3}} \tan\bigg(\frac{\pi}{2 \sqrt{3}}\bigg)\,</math>
|-
| align="center" | 13
| align="left" | [[Centered tridecagonal numbers|Centered tridecagonal]]
| align="center" | <math>{x^2+11x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>13n\,</math>
| align="center" | <math>13 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 14
| align="left" | [[Centered tetradecagonal numbers|Centered tetradecagonal]]
| align="center" | <math>{x^2+12x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>14n\,</math>
| align="center" | <math>14 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | '''15'''
| align="left" | [[Centered pentadecagonal numbers|'''Centered pentadecagonal''']]
| align="center" | <math>{x^2+13x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>15n\,</math>
| align="center" | <math>15 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | '''16'''
| align="left" | [[Centered hexadecagonal numbers|'''Centered hexadecagonal''']]
| align="center" | <math>{x^2+14x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>16n\,</math>
| align="center" | <math>16 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{\pi}{4\sqrt{2}} \tan\bigg(\frac{\pi}{2 \sqrt{2}}\bigg)\,</math>
|-
| align="center" | '''17'''
| align="left" | [[Centered heptadecagonal numbers|'''Centered heptadecagonal''']]
| align="center" | <math>{x^2+15x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>17n\,</math>
| align="center" | <math>17 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 18
| align="left" | [[Centered octadecagonal numbers|Centered octadecagonal]]
| align="center" | <math>{x^2+16x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>18n\,</math>
| align="center" | <math>18 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 19
| align="left" | [[Centered nonadecagonal numbers|Centered nonadecagonal]]
| align="center" | <math>{x^2+17x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>19n\,</math>
| align="center" | <math>19 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | '''20'''
| align="left" | [[Centered icosagonal numbers|'''Centered icosagonal''']]
| align="center" | <math>{x^2+18x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>20n\,</math>
| align="center" | <math>20 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 21
| align="left" | [[Centered icosihenagonal numbers|Centered icosihenagonal]]
| align="center" | <math>{x^2+19x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>21n\,</math>
| align="center" | <math>21 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 22
| align="left" | [[Centered icosidigonal numbers|Centered icosidigonal]]
| align="center" | <math>{x^2+20x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>22n\,</math>
| align="center" | <math>22 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 23
| align="left" | [[Centered icositrigonal numbers|Centered icositrigonal]]
| align="center" | <math>{x^2+21x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>23n\,</math>
| align="center" | <math>23 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | '''24'''
| align="left" | [[Centered icositetragonal numbers|'''Centered icositetragonal''']]
| align="center" | <math>{x^2+22x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>24n\,</math>
| align="center" | <math>24 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{\pi}{4\sqrt{6}} \tan\bigg( \frac{\pi}{\sqrt{6}} \bigg)\,</math>
|-
| align="center" | 25
| align="left" | [[Centered icosipentagonal numbers|Centered icosipentagonal]]
| align="center" | <math>{x^2+23x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>25n\,</math>
| align="center" | <math>25 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 26
| align="left" | [[Centered icosihexagonal numbers|Centered icosihexagonal]]
| align="center" | <math>{x^2+24x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>26n\,</math>
| align="center" | <math>26 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 27
| align="left" | [[Centered icosiheptagonal numbers|Centered icosiheptagonal]]
| align="center" | <math>{x^2+25x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>27n\,</math>
| align="center" | <math>27 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 28
| align="left" | [[Centered icosioctagonal numbers|Centered icosioctagonal]]
| align="center" | <math>{x^2+26x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>28n\,</math>
| align="center" | <math>28 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | 29
| align="left" | [[Centered icosinonagonal numbers|Centered icosinonagonal]]
| align="center" | <math>{x^2+27x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>29n\,</math>
| align="center" | <math>29 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\,</math>
|-
| align="center" | '''30'''
| align="left" | [[Centered triacontagonal numbers|'''Centered triacontagonal''']]
| align="center" | <math>{x^2+28x+1}\over{(1-x)^3}\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>30n\,</math>
| align="center" | <math>30 \binom{m+2}{3} + m\,</math>
| align="center" | <math>\,</math>
| align="center" | <math>\frac{\pi}{6\sqrt{5}} \tan\bigg(\frac{\pi}{\sqrt{5}}\bigg)\,</math>
|-
|}
<br />

== Table of sequences ==

<!--== Wikitable color scheme is: [background: #f2f2f2; for table header] [background: #f9f9f9; for table cells] ==-->
{| class="wikitable" align="center" border="1" cellspacing="0" cellpadding="4" style="border-collapse: collapse; border: 1px solid darkgray; background: #f9f9f9; color: black; empty-cells: show; text-align: left;"
|+ '''Centered polygonal numbers sequences'''
|- style="background: #f2f2f2; color: black; text-align: center;"
! width="25" style="text-align: center;" | ''N''<sub>0</sub>
! style="text-align: center;" | <math>\,_cP^{(2)}_{N_0}(n),\ n \ge 0</math> sequences
|-
| style="text-align: center;" | '''3'''
| {1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, ...}
|-
| style="text-align: center;" | '''4'''
| {1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, ...}
|-
| style="text-align: center;" | '''5'''
| {1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, ...}
|-
| style="text-align: center;" | '''6'''
| {1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, ...}
|-
| style="text-align: center;" | '''7'''
| {1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, 638, 736, 841, 953, 1072, 1198, 1331, 1471, 1618, 1772, 1933, 2101, 2276, 2458, 2647, 2843, 3046, 3256, 3473, ...}
|-
| style="text-align: center;" | '''8'''
| {1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, ...}
|-
| style="text-align: center;" | '''9'''
| {1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, ...}
|-
| style="text-align: center;" | '''10'''
| {1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, ...}
|-
| style="text-align: center;" | '''11'''
| {1, 12, 34, 67, 111, 166, 232, 309, 397, 496, 606, 727, 859, 1002, 1156, 1321, 1497, 1684, 1882, 2091, 2311, 2542, 2784, 3037, 3301, 3576, 3862, 4159, 4467, 4786, ...}
|-
| style="text-align: center;" | '''12'''
| {1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773, 3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, ...}
|-
| style="text-align: center;" | '''13'''
| {1, 14, 40, 79, 131, 196, 274, 365, 469, 586, 716, 859, 1015, 1184, 1366, 1561, 1769, 1990, 2224, 2471, 2731, 3004, 3290, 3589, 3901, 4226, 4564, 4915, 5279, 5656, 6046, ...}
|-
| style="text-align: center;" | '''14'''
| {1, 15, 43, 85, 141, 211, 295, 393, 505, 631, 771, 925, 1093, 1275, 1471, 1681, 1905, 2143, 2395, 2661, 2941, 3235, 3543, 3865, 4201, 4551, 4915, 5293, 5685, 6091, 6511, ...}
|-
| style="text-align: center;" | '''15'''
| {1, 16, 46, 91, 151, 226, 316, 421, 541, 676, 826, 991, 1171, 1366, 1576, 1801, 2041, 2296, 2566, 2851, 3151, 3466, 3796, 4141, 4501, 4876, 5266, 5671, 6091, 6526, 6976, ...}
|-
| style="text-align: center;" | '''16'''
| {1, 17, 49, 97, 161, 241, 337, 449, 577, 721, 881, 1057, 1249, 1457, 1681, 1921, 2177, 2449, 2737, 3041, 3361, 3697, 4049, 4417, 4801, 5201, 5617, 6049, 6497, 6961, 7441, ...}
|-
| style="text-align: center;" | '''17'''
| {1, 18, 52, 103, 171, 256, 358, 477, 613, 766, 936, 1123, 1327, 1548, 1786, 2041, 2313, 2602, 2908, 3231, 3571, 3928, 4302, 4693, 5101, 5526, 5968, 6427, 6903, 7396, 7906, ...}
|-
| style="text-align: center;" | '''18'''
| {1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, ...}
|-
| style="text-align: center;" | '''19'''
| {1, 20, 58, 115, 191, 286, 400, 533, 685, 856, 1046, 1255, 1483, 1730, 1996, 2281, 2585, 2908, 3250, 3611, 3991, 4390, 4808, 5245, 5701, 6176, 6670, 7183, 7715, 8266, 8836, ...}
|-
| style="text-align: center;" | '''20'''
| {1, 21, 61, 121, 201, 301, 421, 561, 721, 901, 1101, 1321, 1561, 1821, 2101, 2401, 2721, 3061, 3421, 3801, 4201, 4621, 5061, 5521, 6001, 6501, 7021, 7561, 8121, 8701, 9301, ...}
|-
| style="text-align: center;" | '''21'''
| {1, 22, 64, 127, 211, 316, 442, 589, 757, 946, 1156, 1387, 1639, 1912, 2206, 2521, 2857, 3214, 3592, 3991, 4411, 4852, 5314, 5797, 6301, 6826, 7372, 7939, 8527, 9136, 9766, ...}
|-
| style="text-align: center;" | '''22'''
| {1, 23, 67, 133, 221, 331, 463, 617, 793, 991, 1211, 1453, 1717, 2003, 2311, 2641, 2993, 3367, 3763, 4181, 4621, 5083, 5567, 6073, 6601, 7151, 7723, 8317, 8933, 9571, 10231, ...}
|-
| style="text-align: center;" |'''23'''
| {1, 24, 70, 139, 231, 346, 484, 645, 829, 1036, 1266, 1519, 1795, 2094, 2416, 2761, 3129, 3520, 3934, 4371, 4831, 5314, 5820, 6349, 6901, 7476, 8074, 8695, 9339, 10006, ...}
|-
| style="text-align: center;" | '''24'''
| {1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, ...}
|-
| style="text-align: center;" | '''25'''
| {1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, ...}
|-
| style="text-align: center;" | '''26'''
| {1, 27, 79, 157, 261, 391, 547, 729, 937, 1171, 1431, 1717, 2029, 2367, 2731, 3121, 3537, 3979, 4447, 4941, 5461, 6007, 6579, 7177, 7801, 8451, 9127, 9829, 10557, 11311, ...}
|-
| style="text-align: center;" | '''27'''
| {1, 28, 82, 163, 271, 406, 568, 757, 973, 1216, 1486, 1783, 2107, 2458, 2836, 3241, 3673, 4132, 4618, 5131, 5671, 6238, 6832, 7453, 8101, 8776, 9478, 10207, 10963, 11746, ...}
|-
| style="text-align: center;" | '''28'''
| {1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, ...}
|-
| style="text-align: center;" | '''29'''
| {1, 30, 88, 175, 291, 436, 610, 813, 1045, 1306, 1596, 1915, 2263, 2640, 3046, 3481, 3945, 4438, 4960, 5511, 6091, 6700, 7338, 8005, 8701, 9426, 10180, 10963, 11775, 12616, ...}
|-
| style="text-align: center;" | '''30'''
| {1, 31, 91, 181, 301, 451, 631, 841, 1081, 1351, 1651, 1981, 2341, 2731, 3151, 3601, 4081, 4591, 5131, 5701, 6301, 6931, 7591, 8281, 9001, 9751, 10531, 11341, 12181, 13051, ...}
|-
|}
<br>


==References==
==References==

Revision as of 20:07, 29 November 2021

The centered polygonal numbers are a class of series of figurate numbers, each formed by a central dot, surrounded by polygonal layers with a constant number of sides. Each side of a polygonal layer contains one dot more than a side in the previous layer, so starting from the second polygonal layer each layer of a centered k-gonal number contains k more points than the previous layer.

Examples

Each element in the sequence is a multiple of the previous triangular number plus 1. This can be formalized by the equation where a is the number of sides of the polygon, and x is the sequence number, starting with zero for the initial 1. For example, the centered square numbers are four times the triangular numbers plus 1, or equivalently .

These series consist of the

and so on.

The following diagrams show a few examples of centered polygonal numbers and their geometric construction. Compare these diagrams with the diagrams in Polygonal number.

centered
triangular
number
centered
square
number
centered
pentagonal
number
centered
hexagonal
number

Centered square numbers

1     5     13     25
   

   



   





Centered hexagonal numbers

1             7             19                  37
* **
***
**
***
****
*****
****
***
****
*****
******
*******
******
*****
****

Formula

As can be seen in the above diagrams, the nth centered k-gonal number can be obtained by placing k copies of the (n−1)th triangular number around a central point; therefore, the nth centered k-gonal number can be mathematically represented by

The difference of the n-th and the (n+1)-th consecutive centered k-gonal numbers is k(2n+1).

The n-th centered k-gonal number is equal to the n-th regular k-gonal number plus (n-1)2.

Just as is the case with regular polygonal numbers, the first centered k-gonal number is 1. Thus, for any k, 1 is both k-gonal and centered k-gonal. The next number to be both k-gonal and centered k-gonal can be found using the formula:

which tells us that 10 is both triangular and centered triangular, 25 is both square and centered square, etc.

Whereas a prime number p cannot be a polygonal number (except the trivial case, i.e. each p is the second p-gonal number), many centered polygonal numbers are primes. In fact, if k ≥ 3, k ≠ 8, k ≠ 9, then there are infinitely many centered k-gonal numbers which are primes (assuming the Bunyakovsky conjecture). (Since all centered octagonal numbers are also square numbers, and all centered nonagonal numbers are also triangular numbers (and not equal to 3), thus both of them cannot be prime numbers)

Sum of Reciprocals

The sum of reciprocals for the centered k-gonal numbers is[1]

, if k ≠ 8
, if k = 8

Table of formulae and values

Centered polygonal numbers associated with constructible polygons (Cf. A003401) (with straightedge and compass) are named in bold.

Centered polygonal numbers formulae and values
N0 Name Formulae

n = 0 1 2 3 4 5 6 7 8 9 10 11 OEIS

number

3 Centered triangular

1 4 10 19 31 46 64 85 109 136 166 199 A005448(n+1)
4 Centered square

1 5 13 25 41 61 85 113 145 181 221 265 A001844(n)
5 Centered pentagonal

1 6 16 31 51 76 106 141 181 226 276 331 A005891(n)
6 Centered hexagonal

Hex numbers

1 7 19 37 61 91 127 169 217 271 331 397 A003215(n)
7 Centered heptagonal

1 8 22 43 71 106 148 197 253 316 386 463 A069099(n+1)
8 Centered octagonal

Odd squares

1 9 25 49 81 121 169 225 289 361 441 529 A016754(n)
9 Centered nonagonal

1 10 28 55 91 136 190 253 325 406 496 595 A060544(n+1)
10 Centered decagonal

1 11 31 61 101 151 211 281 361 451 551 661 A062786(n+1)
11 Centered hendecagonal

1 12 34 67 111 166 232 309 397 496 606 727 A069125(n+1)
12 Centered dodecagonal

1 13 37 73 121 181 253 337 433 541 661 793 A003154(n+1)
13 Centered tridecagonal

1 14 40 79 131 196 274 365 469 586 716 859 A069126(n+1)
14 Centered tetradecagonal

1 15 43 85 141 211 295 393 505 631 771 925 A069127(n+1)
15 Centered pentadecagonal

1 16 46 91 151 226 316 421 541 676 826 991 A069128(n+1)
16 Centered hexadecagonal

1 17 49 97 161 241 337 449 577 721 881 1057 A069129(n+1)
17 Centered heptadecagonal

1 18 52 103 171 256 358 477 613 766 936 1123 A069130(n+1)
18 Centered octadecagonal

1 19 55 109 181 271 379 505 649 811 991 1189 A069131(n+1)
19 Centered nonadecagonal

1 20 58 115 191 286 400 533 685 856 1046 1255 A069132(n+1)
20 Centered icosagonal

1 21 61 121 201 301 421 561 721 901 1101 1321 A069133(n+1)
21 Centered icosihenagonal

1 22 64 127 211 316 442 589 757 946 1156 1387 A069178(n+1)
22 Centered icosidigonal

1 23 67 133 221 331 463 617 793 991 1211 1453 A069173(n+1)
23 Centered icositrigonal

1 24 70 139 231 346 484 645 829 1036 1266 1519 A069174(n+1)
24 Centered icositetragonal

1 25 73 145 241 361 505 673 865 1081 1321 1585 A069190(n+1)
25 Centered icosipentagonal

1 26 76 151 251 376 526 701 901 1126 1376 1651 OEIS:A??????
26 Centered icosihexagonal

1 27 79 157 261 391 547 729 937 1171 1431 1717 OEIS:A??????
27 Centered icosiheptagonal

1 28 82 163 271 406 568 757 973 1216 1486 1783 OEIS:A??????
28 Centered icosioctagonal

1 29 85 169 281 421 589 785 1009 1261 1541 1849 OEIS:A??????
29 Centered icosinonagonal

1 30 88 175 291 436 610 813 1045 1306 1596 1915 OEIS:A??????
30 Centered triacontagonal

1 31 91 181 301 451 631 841 1081 1351 1651 1981 OEIS:A??????


Centered polygonal numbers associated with constructible polygons (Cf. A003401) (with straightedge and compass) are named in bold.

Centered polygonal numbers related formulae and values
N0 Name Generating

function


Order

of basis

Differences


Partial sums



Partial sums of reciprocals

Sum of Reciprocals[2]


3 Centered triangular
4 Centered square

5 Centered pentagonal
6 Centered hexagonal
7 Centered heptagonal
8 Centered octagonal
9 Centered nonagonal
10 Centered decagonal
11 Centered hendecagonal
12 Centered dodecagonal
13 Centered tridecagonal
14 Centered tetradecagonal
15 Centered pentadecagonal
16 Centered hexadecagonal
17 Centered heptadecagonal
18 Centered octadecagonal
19 Centered nonadecagonal
20 Centered icosagonal
21 Centered icosihenagonal
22 Centered icosidigonal
23 Centered icositrigonal
24 Centered icositetragonal
25 Centered icosipentagonal
26 Centered icosihexagonal
27 Centered icosiheptagonal
28 Centered icosioctagonal
29 Centered icosinonagonal
30 Centered triacontagonal


Table of sequences

Centered polygonal numbers sequences
N0 sequences
3 {1, 4, 10, 19, 31, 46, 64, 85, 109, 136, 166, 199, 235, 274, 316, 361, 409, 460, 514, 571, 631, 694, 760, 829, 901, 976, 1054, 1135, 1219, 1306, 1396, 1489, 1585, 1684, ...}
4 {1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, ...}
5 {1, 6, 16, 31, 51, 76, 106, 141, 181, 226, 276, 331, 391, 456, 526, 601, 681, 766, 856, 951, 1051, 1156, 1266, 1381, 1501, 1626, 1756, 1891, 2031, 2176, 2326, 2481, 2641, ...}
6 {1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397, 469, 547, 631, 721, 817, 919, 1027, 1141, 1261, 1387, 1519, 1657, 1801, 1951, 2107, 2269, 2437, 2611, 2791, 2977, 3169, ...}
7 {1, 8, 22, 43, 71, 106, 148, 197, 253, 316, 386, 463, 547, 638, 736, 841, 953, 1072, 1198, 1331, 1471, 1618, 1772, 1933, 2101, 2276, 2458, 2647, 2843, 3046, 3256, 3473, ...}
8 {1, 9, 25, 49, 81, 121, 169, 225, 289, 361, 441, 529, 625, 729, 841, 961, 1089, 1225, 1369, 1521, 1681, 1849, 2025, 2209, 2401, 2601, 2809, 3025, 3249, 3481, 3721, 3969, ...}
9 {1, 10, 28, 55, 91, 136, 190, 253, 325, 406, 496, 595, 703, 820, 946, 1081, 1225, 1378, 1540, 1711, 1891, 2080, 2278, 2485, 2701, 2926, 3160, 3403, 3655, 3916, 4186, 4465, ...}
10 {1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, ...}
11 {1, 12, 34, 67, 111, 166, 232, 309, 397, 496, 606, 727, 859, 1002, 1156, 1321, 1497, 1684, 1882, 2091, 2311, 2542, 2784, 3037, 3301, 3576, 3862, 4159, 4467, 4786, ...}
12 {1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937, 1093, 1261, 1441, 1633, 1837, 2053, 2281, 2521, 2773, 3037, 3313, 3601, 3901, 4213, 4537, 4873, 5221, 5581, ...}
13 {1, 14, 40, 79, 131, 196, 274, 365, 469, 586, 716, 859, 1015, 1184, 1366, 1561, 1769, 1990, 2224, 2471, 2731, 3004, 3290, 3589, 3901, 4226, 4564, 4915, 5279, 5656, 6046, ...}
14 {1, 15, 43, 85, 141, 211, 295, 393, 505, 631, 771, 925, 1093, 1275, 1471, 1681, 1905, 2143, 2395, 2661, 2941, 3235, 3543, 3865, 4201, 4551, 4915, 5293, 5685, 6091, 6511, ...}
15 {1, 16, 46, 91, 151, 226, 316, 421, 541, 676, 826, 991, 1171, 1366, 1576, 1801, 2041, 2296, 2566, 2851, 3151, 3466, 3796, 4141, 4501, 4876, 5266, 5671, 6091, 6526, 6976, ...}
16 {1, 17, 49, 97, 161, 241, 337, 449, 577, 721, 881, 1057, 1249, 1457, 1681, 1921, 2177, 2449, 2737, 3041, 3361, 3697, 4049, 4417, 4801, 5201, 5617, 6049, 6497, 6961, 7441, ...}
17 {1, 18, 52, 103, 171, 256, 358, 477, 613, 766, 936, 1123, 1327, 1548, 1786, 2041, 2313, 2602, 2908, 3231, 3571, 3928, 4302, 4693, 5101, 5526, 5968, 6427, 6903, 7396, 7906, ...}
18 {1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, ...}
19 {1, 20, 58, 115, 191, 286, 400, 533, 685, 856, 1046, 1255, 1483, 1730, 1996, 2281, 2585, 2908, 3250, 3611, 3991, 4390, 4808, 5245, 5701, 6176, 6670, 7183, 7715, 8266, 8836, ...}
20 {1, 21, 61, 121, 201, 301, 421, 561, 721, 901, 1101, 1321, 1561, 1821, 2101, 2401, 2721, 3061, 3421, 3801, 4201, 4621, 5061, 5521, 6001, 6501, 7021, 7561, 8121, 8701, 9301, ...}
21 {1, 22, 64, 127, 211, 316, 442, 589, 757, 946, 1156, 1387, 1639, 1912, 2206, 2521, 2857, 3214, 3592, 3991, 4411, 4852, 5314, 5797, 6301, 6826, 7372, 7939, 8527, 9136, 9766, ...}
22 {1, 23, 67, 133, 221, 331, 463, 617, 793, 991, 1211, 1453, 1717, 2003, 2311, 2641, 2993, 3367, 3763, 4181, 4621, 5083, 5567, 6073, 6601, 7151, 7723, 8317, 8933, 9571, 10231, ...}
23 {1, 24, 70, 139, 231, 346, 484, 645, 829, 1036, 1266, 1519, 1795, 2094, 2416, 2761, 3129, 3520, 3934, 4371, 4831, 5314, 5820, 6349, 6901, 7476, 8074, 8695, 9339, 10006, ...}
24 {1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, ...}
25 {1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, ...}
26 {1, 27, 79, 157, 261, 391, 547, 729, 937, 1171, 1431, 1717, 2029, 2367, 2731, 3121, 3537, 3979, 4447, 4941, 5461, 6007, 6579, 7177, 7801, 8451, 9127, 9829, 10557, 11311, ...}
27 {1, 28, 82, 163, 271, 406, 568, 757, 973, 1216, 1486, 1783, 2107, 2458, 2836, 3241, 3673, 4132, 4618, 5131, 5671, 6238, 6832, 7453, 8101, 8776, 9478, 10207, 10963, 11746, ...}
28 {1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, ...}
29 {1, 30, 88, 175, 291, 436, 610, 813, 1045, 1306, 1596, 1915, 2263, 2640, 3046, 3481, 3945, 4438, 4960, 5511, 6091, 6700, 7338, 8005, 8701, 9426, 10180, 10963, 11775, 12616, ...}
30 {1, 31, 91, 181, 301, 451, 631, 841, 1081, 1351, 1651, 1981, 2341, 2731, 3151, 3601, 4081, 4591, 5131, 5701, 6301, 6931, 7591, 8281, 9001, 9751, 10531, 11341, 12181, 13051, ...}


References

  • Neil Sloane & Simon Plouffe (1995). The Encyclopedia of Integer Sequences. San Diego: Academic Press.: Fig. M3826
  • Weisstein, Eric W. "Centered polygonal number". MathWorld.
  • F. Tapson (1999). The Oxford Mathematics Study Dictionary (2nd ed.). Oxford University Press. pp. 88–89. ISBN 0-19-914-567-9.