Jump to content

Terabit Ethernet: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
200G port types: Restore Media counts and one lambda count (all lost on 14 November).
m 200G port types: Fix a rowspan
Line 232: Line 232:
| align="center" | <small>?</small>
| align="center" | <small>?</small>
| style="background-color:yellow" | {{nowrap|OS2: 2k}}
| style="background-color:yellow" | {{nowrap|OS2: 2k}}
| rowspan="4" style="text-align:right;" | 2
| rowspan="3" style="text-align:right;" | 2
| rowspan="4" style="text-align:right;" | 4
| rowspan="3" style="text-align:right;" | 4
| rowspan="4" style="text-align:right;" | 4
| rowspan="3" style="text-align:right;" | 4
| <small>'''WDM'''</small>
| <small>'''WDM'''</small>
|-
|-

Revision as of 18:50, 8 December 2021

Terabit Ethernet or TbE is Ethernet with speeds above 100 Gigabit Ethernet. 400 Gigabit Ethernet (400G, 400GbE) and 200 Gigabit Ethernet (200G, 200GbE)[1] standards developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet[2][3] were approved on December 6, 2017.[4][5] In 2016, several networking equipment suppliers were already offering proprietary solutions for 200G and 400G.[5]

The Ethernet Alliance's 2020 technology roadmap expects speeds of 800 Gbit/s and 1.6 Tbit/s become IEEE standard after 2020, possibly in 2025.[6][7] Doubling to 800 GbE is expected to occur after 112 Gbit/s SerDes become available. The Optical Internetworking Forum (OIF) has already announced five new projects at 112 Gbit/s which would also make 4th generation (single-lane) 100 GbE links possible.[8]

History

Facebook and Google, among other companies, have expressed a need for TbE.[9] While a speed of 400 Gbit/s is achievable with existing technology, 1 Tbit/s (1000 Gbit/s) would require different technology.[2][10] Accordingly, at the IEEE Industry Connections Higher Speed Ethernet Consensus group meeting in September 2012, 400 GbE was chosen as the next generation goal.[2] Additional 200GbE objectives were added in January 2016.

The University of California, Santa Barbara (UCSB) attracted help from Agilent Technologies, Google, Intel, Rockwell Collins, and Verizon Communications to help with research into next generation Ethernet.[11]

As of early 2016, chassis/modular based core router platforms from Cisco, Juniper and other major manufacturers support 400 Gbit/s full duplex data rates per slot. One, two and four port 100GbE and one port 400GbE line cards are presently available. As of early 2019, 200GbE line cards became available after 802.3cd standard ratification.[12][13]

200G Ethernet uses PAM4 signaling which allows 2 bits to be transmitted per clock cycle, but at a higher implementation cost.[14]

Standards development

The IEEE formed the "IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment Ad Hoc", to investigate the business needs for short and long term bandwidth requirements.[15][16][17]

IEEE 802.3's "400 Gb/s Ethernet Study Group" started working on the 400 Gbit/s generation standard in March 2013.[18] Results from the study group were published and approved on March 27, 2014. Subsequently, the IEEE 802.3bs Task Force[19] started working to provide physical layer specifications for several link distances.[20]

The IEEE 802.3bs standard was approved on December 6, 2017[4] and is available online.[21]

The IEEE 802.3cd standard was approved on December 5, 2018.

The IEEE 802.3cn standard was approved on December 20, 2019.

The IEEE 802.3cm standard was approved on January 30, 2020.

The IEEE 802.3cu standard was approved on February 11, 2021.

IEEE project objectives

Like all speeds since 10 Gigabit Ethernet, the standards support only full-duplex operation. Other objectives include:[20]

  1. Support MAC data rates of 400 Gbit/s and 200 Gbit/s[1]
  2. Preserve the Ethernet frame format utilizing the Ethernet MAC
  3. Preserve minimum and maximum frame size of current Ethernet standard
  4. Support a bit error ratio (BER) of 10−13, which is an improvement over the 10−12 BER that was specified for 10GbE, 40GbE, and 100GbE.
  5. Support for OTN (transport of Ethernet across optical transport networks), and optional support for Energy-Efficient Ethernet (EEE).

802.3bs project

Define physical layer specifications supporting:[20]

  • 400 Gbit/s Ethernet
    • at least 100 m over multi-mode fiber (400GBASE-SR16) using sixteen parallel strands of fiber each at 25 Gbit/s[22][23]
    • at least 500 m over single-mode fiber (400GBASE-DR4) using four parallel strands of fiber each at 100 Gbit/s[24][25]
    • at least 2 km over single-mode fiber (400GBASE-FR8) using eight parallel wavelengths (CWDM) each at 50 Gbit/s[24][26][27]
    • at least 10 km over single-mode fiber (400GBASE-LR8) using eight parallel wavelengths (CWDM) each at 50 Gbit/s[24][27][28]
    • eight and sixteen lane chip-to-chip/chip-to-module electrical interfaces (400GAUI-8 and 400GAUI-16)
  • 200 Gbit/s Ethernet
    • at least 500 m over single-mode fiber (200GBASE-DR4) using four parallel strands of fiber each at 50 Gbit/s[29][30]
    • at least 2 km over single-mode fiber (200GBASE-FR4) using four parallel wavelengths (CWDM) each at 50 Gbit/s[1][30]
    • at least 10 km over single-mode fiber (200GBASE-LR4) using four parallel wavelengths (CWDM) each at 50 Gbit/s[1][30]
    • four and eight lane chip-to-chip/chip-to-module electrical interfaces (200GAUI-4 and 200GAUI-8)

802.3cd project

  • Define four-lane 200 Gbit/s PHYs for operation over:
    • copper twin-axial cables with lengths up to at least 3 m (200GBASE-CR4).
    • printed circuit board backplane with a total channel insertion loss of ≤ 30 dB at 13.28125 GHz (200GBASE-KR4).
  • Define 200 Gbit/s PHYs for operation over MMF with lengths up to at least 100 m (200GBASE-SR4).

802.3ck project

  • 200 Gbit/s Ethernet
    • Define a two-lane 200 Gbit/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 100 Gbit/s per lane optical signaling (200GAUI-2 C2M)
    • Define a two-lane 200 Gbit/s Attachment Unit Interface (AUI) for chip-to-chip applications (200GAUI-2 C2C)
    • Define a two-lane 200 Gbit/s PHY for operation over electrical backplanes an insertion loss ≤ 28 dB at 26.56 GHz (200GBASE-KR2)
    • Define a two-lane 200 Gbit/s PHY for operation over twin axial copper cables with lengths up to at least 2 m (200GBASE-CR2)
  • 400 Gbit/s Ethernet
    • Define a four-lane 400 Gbit/s Attachment Unit interface (AUI) for chip-to-module applications, compatible with PMDs based on 100 Gbit/s per lane optical signaling (400GAUI-4 C2M)
    • Define a four-lane 400 Gbit/s Attachment Unit Interface (AUI) for chip-to-chip applications (400GAUI-4 C2C)
    • Define a four-lane 400 Gbit/s PHY for operation over electrical backplanes an insertion loss ≤ 28 dB at 26.56 GHz (400GBASE-KR4)
    • Define a four-lane 400 Gbit/s PHY for operation over twin axial copper cables with lengths up to at least 2 m (400GBASE-CR4)

802.3cm project

  • 400 Gbit/s Ethernet
    • Define a physical layer specification supporting 400 Gbit/s operation over 8 pairs of MMF with lengths up to at least 100 m (400GBASE-SR8)
    • Define a physical layer specification supporting 400 Gbit/s operation over 4 pairs of MMF with lengths up to at least 100 m (400GBASE-SR4.2)

802.3cn project

  • 200 Gbit/s Ethernet
    • Provide a physical layer specification supporting 200 Gbit/s operation over four wavelengths capable of at least 40 km of SMF (200GBASE-ER4) [31]
  • 400 Gbit/s Ethernet
    • Provide a physical layer specification supporting 400 Gbit/s operation over eight wavelengths capable of at least 40 km of SMF (400GBASE-ER8)[31]

802.3cu project

  • Define a four-wavelength 400 Gbit/s PHY for operation over SMF with lengths up to at least 2 km (400GBASE-FR4)
  • Define a four-wavelength 400 Gbit/s PHY for operation over SMF with lengths up to at least 6 km (400GBASE-LR4-6) [32]

802.3cw project

  • Provide a physical layer specification supporting 400 Gbit/s operation on a single wavelength capable of at least 80 km over a DWDM system (400GBASE-ZR)[33] Dual polarization 16-state quadrature amplitude modulation (DP-16QAM) with coherent detection is proposed.[34]

802.3db project

  • Define a physical layer specification that supports 200 Gbit/s operation over 2 pairs of MMF with lengths up to at least 50 m (200GBASE-VR2)
  • Define a physical layer specification that supports 200 Gbit/s operation over 2 pairs of MMF with lengths up to at least 100 m (200GBASE-SR2)
  • Define a physical layer specification that supports 400 Gbit/s operation over 4 pairs of MMF with lengths up to at least 50 m (400GBASE-VR4) [35]
  • Define a physical layer specification that supports 400 Gbit/s operation over 2 pairs of MMF with lengths up to at least 100 m (400GBASE-SR4)

200G port types

Legend for fibre-based PHYs[36]
Fibre type Introduced Performance
MMF FDDI 62.5/125 µm 1987 0160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm 1989 0200 MHz·km @ 850 nm
MMF OM2 50/125 µm 1998 0500 MHz·km @ 850 nm
MMF OM3 50/125 µm 2003 1500 MHz·km @ 850 nm
MMF OM4 50/125 µm 2008 3500 MHz·km @ 850 nm
MMF OM5 50/125 µm 2016 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm 1998 1.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm 2000 0.4 dB/km @ 1300/1550 nm
Name Standard Media Connector Transceiver
Module
Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
200 Gigabit Ethernet (200 GbE) (1st Generation: 25GbE-based) - 8x 25.5625 GBd NRZ}[37][38][39]
200GAUI-8 802.3bs-2017
(CL120B/C)
Chip-to-module/
Chip-to-chip interface
0.25 16 N/A 8 PCBs: Chip-to-chip/chip-to-module interface
RS-FEC
200 Gigabit Ethernet (200 GbE) (2nd Generation: 50GbE-based) - 4x 26.5625 GBd PAM4 [37][38][39]
200GAUI-4 802.3bs-2017
(CL120D/E)
Chip-to-module/
Chip-to-chip interface
0.25 8 N/A 4 PCBs: Chip-to-chip/chip-to-module interface;
RS-FEC(544,514)
200GBASE-CR4 802.3cd-2018
(CL136)
twinaxial
copper
cable
QSFP56,
microQSFP,
QSFP-DD,
OSFP

(SFF-8665)
QSFP56 3 8 N/A 4 Data centres (in-rack)
200GBASE-KR4 802.3cd-2018
(CL137)
Cu-Backplane 1 8 N/A 4 PCBs
total insertion loss of ≤ 30 dB at 13.28125 GHz
200GBASE-SR4 802.3cd-2018
(CL138)
Fibre
850 nm
MPO/MTP
(MPO-12)
? OM3: 70 8 1 4
OM4: 100
200GBASE-DR4 802.3bs-2017
(CL121)
Fibre
1304.5 – 1317.5 nm
MPO/MTP
(MPO-12)
? OS2: 500 8 1 4
200GBASE-FR4 802.3bs-2017
(CL122)
Fibre
1271 – 1331 nm
LC ? OS2: 2k 2 4 4 WDM
200GBASE-LR4 802.3bs-2017
(CL122)
Fibre
1295.56 – 1309.14 nm
LC ? OS2: 10k WDM
200GBASE-ER4 802.3cn-2019
(CL122)
Fibre
1295.56 – 1309.14 nm
LC ? OSx: 40k WDM
200 Gigabit Ethernet (200 GbE) (3rd Generation: 100GbE-based) - 2x 53.125 GBd PAM4 [37][38][39]
200GAUI-2 802.3ck
(CL120F/G)
Chip-to-module/
Chip-to-chip interface
? 0.25 4 N/A 2
200GBASE-CR2 802.3ck
(CL162)
twinaxial copper cable QSFP112 ? 2 4 N/A 2
200GBASE-KR2 802.3ck
(CL163)
Cu backplane 1 4 N/A 2 total insertion loss of ≤ 28 dB at 26.56 GHz
200GBASE-VR2 802.3db
(CL167)
Fiber
850 nm
MPO
(MPO-12)
? OM3: 30 4 1 2
OM4: 50
200GBASE-SR2 802.3db
(CL167)
Fiber
850 nm
MPO
(MPO-12)
? OM3: 60
OM4: 100

400G port types

Legend for fibre-based PHYs[36]
Fibre type Introduced Performance
MMF FDDI 62.5/125 µm 1987 0160 MHz·km @ 850 nm
MMF OM1 62.5/125 µm 1989 0200 MHz·km @ 850 nm
MMF OM2 50/125 µm 1998 0500 MHz·km @ 850 nm
MMF OM3 50/125 µm 2003 1500 MHz·km @ 850 nm
MMF OM4 50/125 µm 2008 3500 MHz·km @ 850 nm
MMF OM5 50/125 µm 2016 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm
SMF OS1 9/125 µm 1998 1.0 dB/km @ 1300/1550 nm
SMF OS2 9/125 µm 2000 0.4 dB/km @ 1300/1550 nm
Name Standard Media OFC or RFC Reach
in m
#
Media
(⇆)
#
Lambdas
(→)
#
Lanes
(→)
Notes
400 Gigabit Ethernet (400 GbE) (1st Generation: 25GbE-based) - 16x 25.5625 GBd NRZ
400GAUI-16 802.3bs-2017
(cl 120B/C)
Chip-to-module/
Chip-to-chip interface
0.25 32 N/A 16
400GBASE-SR16 802.3bs-2017
(cl 123)
Fiber
850 nm
MPO/MTP
(MPO-32)
OM3: 70 32 1 16
OM4: 100
OM5: 100
400 Gigabit Ethernet (400 GbE) (2nd Generation: 50GbE-based) - 8x 26.5625 GBd PAM4
400GAUI-8 802.3bs-2017
(cl 120D/E)
Chip-to-module/
Chip-to-chip interface
0.25 16 N/A 8
400GBASE-SR8 802.3cm-2020
(cl 138)
Fiber
850 nm
MPO/MTP
(MPO-16)
OM3: 70 16 1 8
OM4: 100
OM5: 100
400GBASE-SR4.2
(Bidirectional)
802.3cm-2020
(cl 150)
Fiber
850 nm
912 nm
MPO/MTP
(MPO-12)
OM3: 70 8 2 8 Uses bidirectional (on 2 lambdas) wavelength-division duplexing
OM4: 100
OM5: 150
400GBASE-FR8 802.3bs-2017
(cl 122)
Fiber
1273−1309 nm[40]
LC OSx: 2000 2 8 8
400GBASE-LR8 802.3bs-2017
(cl 122)
OSx: 10000
400GBASE-ER8 802.3cn-2019
(cl 122)
OSx: 40000


400 Gigabit Ethernet (400 GbE) (3rd Generation: 100GbE-based) - 4x 53.125 GBd PAM4
400GAUI-4 802.3ck
(cl 120F/G)
Chip-to-module/
Chip-to-chip interface
0.25 8 N/A 4
400GBASE-KR4 802.3ck
(cl163)
Cu backplane 8 N/A 4 Insertion loss ≤ 28 dB at 26.56 GHz
400GBASE-CR4 802.3ck
(cl162)
twinaxial copper cable QSFPDD 2 8 N/A 4
400GBASE-VR4 802.3db
(cl 167)
Fiber
850 nm
MPO
(MPO-12)
OM3: 30 8 1 4
OM4: 50
OM5: 50
400GBASE-SR4 802.3db
(cl 167)
MPO
(MPO-12)
OM3: 60 8 1 4
OM4: 100
OM5: 100
400GBASE-DR4 802.3bs-2017
(cl 124)
Fiber
1304.5 - 1317.5 nm
MPO/MTP
(MPO-12)
OSx: 500 8 1 4
400GBASE-XDR4 proprietary
(non IEEE)
OSx: 2000
400GBASE-FR4 802.3cu-2021
(cl 151)
Fiber
1271−1331 nm
LC OSx: 2000 2 4 4 Multi-Vendor Standard [41]
400GBASE-LR4-6 802.3cu-2021
(cl 151)
OSx: 6000
400GBASE-LR4-10
proprietary
(MSA, Sept 2020)
OSx: 10000 Multi-Vendor Standard[42]
400GBASE-ZR 802.3cw
(cl 155/156)
Fiber LC OSx: 80000 2 1 2 59.84375 Gigabaud (DP-16QAM)

See also

References

  1. ^ a b c d "IEEE 802.3 NGOATH SG Adopted Changes to 802.3bs Project Objectives" (PDF).
  2. ^ a b c "Network boffins say Terabit Ethernet is TOO FAST: Sticking to 400Gb for now".
  3. ^ On-board optics: beyond pluggables
  4. ^ a b "[STDS-802-3-400G] IEEE P802.3bs Approved!". IEEE 802.3bs Task Force. Retrieved 2017-12-14.
  5. ^ a b "High-Speed Transmission Update: 200G/400G". 2016-07-18.
  6. ^ "The 2020 Ethernet Roadmap". Ethernet Alliance.
  7. ^ Jain, P. C. (2016). "Recent trends in next generation terabit Ethernet and gigabit wireless local area network". 2016 International Conference on Signal Processing and Communication (ICSC). IEEE. pp. 106–110. doi:10.1109/ICSPCom.2016.7980557. ISBN 978-1-5090-2684-5. S2CID 25506683.
  8. ^ "OIF Launches CEI-112G Project for 100G Serial Electrical Links". Businesswire. 30 Aug 2016.
  9. ^ Feldman, Michael (February 3, 2010). "Facebook Dreams of Terabit Ethernet". HPCwire. Tabor Communications, Inc.
  10. ^ Matsumoto, Craig (March 5, 2010). "Dare We Aim for Terabit Ethernet?". Light Reading. UBM TechWeb.
  11. ^ Craig Matsumoto (October 26, 2010). "The Terabit Ethernet Chase Begins". Light Reading. Retrieved December 15, 2011.
  12. ^ "Cisco 4 x 100 Gbit/s interface".
  13. ^ "Alcatel-Lucent boosts operator capacity to deliver big data and video over existing networks with launch of 400G IP router interface".
  14. ^ Smith, Ryan. "Micron Spills on GDDR6X: PAM4 Signaling For Higher Rates, Coming to NVIDIA's RTX 3090". www.anandtech.com.
  15. ^ Stephen Lawson (May 9, 2011). "IEEE Seeks Data on Ethernet Bandwidth Needs". PC World. Retrieved May 23, 2013.
  16. ^ "IEEE Industry Connections Ethernet Bandwidth Assessment" (PDF). IEEE 802.3 Ethernet Working Group. July 19, 2012. Retrieved 2015-03-01.
  17. ^ Max Burkhalter Brafton (May 12, 2011). "Terabit Ethernet could be on its way". Perle. Retrieved December 15, 2011.
  18. ^ "400 Gb/s Ethernet Study Group". Group web site. IEEE 802.3. Retrieved May 23, 2013.
  19. ^ IEEE 802.3bs Task Force
  20. ^ a b c "Objectives" (PDF). IEEE 802.3bs Task Force. Mar 2014. Retrieved 2015-03-01.
  21. ^ "P802.3bs - IEEE Standard for Ethernet Amendment: Media Access Control Parameters, Physical Layers and Management Parameters for 200 Gb/s and 400 Gb/s Operation". IEEE 802.3bs Task Force. Retrieved 2017-12-14.
  22. ^ 100 m MMF draft proposal
  23. ^ "400GBase-SR16 draft specifications" (PDF).
  24. ^ a b c IEEE 802.3 Ethernet Working Group Liaison letter to ITU-T Questions 6/15 and 11/15
  25. ^ 400G-PSM4: A Proposal for the 500 m Objective using 100 Gbit/s per Lane Signaling
  26. ^ 400Gb/s 8x50G PAM4 WDM 2km SMF PMD Baseline Specifications
  27. ^ a b Baseline Proposal for 8 x 50G NRZ for 400GbE 2 km and 10 km PMD
  28. ^ "400 GbE technical draft specifications" (PDF).
  29. ^ IEEE 802.3 NGOATH SG Adopted Changes to 802.3bs Project Objectives Updated by IEEE 802.3 NGOATH Study Group, Mar 16, 2016, IEEE 802 Mar 2016 Plenary, Macau, China.
  30. ^ a b c IEEE 802.3bs 200/400 Gb/s Ethernet (Standards Informant)
  31. ^ a b http://www.ieee802.org/3/cn/proj_doc/3cn_Objectives_181113.pdf
  32. ^ https://www.ieee802.org/3/cu/Objectives_Approved_Sept_2019.pdf
  33. ^ http://www.ieee802.org/3/cw/proj_doc/3cw_Objectives_190911.pdf
  34. ^ https://www.ieee802.org/3/ct/public/tf_interim/20_0227/dambrosia_3cw_01_200227.pdf
  35. ^ http://www.ieee802.org/3/db/P802d3db_Objectives_Approved_May_2020.pdf
  36. ^ a b Charles E. Spurgeon (2014). Ethernet: The Definitive Guide (2nd ed.). O'Reilly Media. ISBN 978-1-4493-6184-6.
  37. ^ a b c "Exploring The IEEE 802 Ethernet Ecosystem" (PDF). IEEE. 2017-06-04. Retrieved 2018-08-29.
  38. ^ a b c "Multi-Port Implementations of 50/100/200GbE" (PDF). Brocade. 2016-05-22. Retrieved 2018-08-29.
  39. ^ a b c Goergen, Joel. "100Gb/s Electrical Signaling" (PDF). ieee802.org. IEEE 802.3 NEA Ad hoc. Retrieved 8 December 2021.
  40. ^ 1273.5449/1277.8877/1282.2603/1286.6629 + 1295.5595/1300.0540/1304.5799/1309.1374 nm (229.0/229.8/230.6/231.4 + 233.0/233.8/234.6/235.4 THz)
  41. ^ Nowell, Mark. "400G-FR4 Technical Specification". 100glambda.com. 100G Lambda MSA Group. Retrieved 26 May 2021.
  42. ^ Nowell, Mark. "400G-LR4-10 Technical Specification". 100glambda.com. 100G Lambda MSA Group. Retrieved 26 May 2021.

Further reading