5000 (number): Difference between revisions
Appearance
Content deleted Content added
Better source needed |
Tag: Reverted |
||
Line 12: | Line 12: | ||
===5001 to 5099=== |
===5001 to 5099=== |
||
* '''5001''' – trimorphic number<ref>https://oeis.org/A033819</ref> |
|||
* '''5002''' – two times a [[pentagonal number]] (initial [[pentagonal number]] being 2501)<ref>https://oeis.org/A049450</ref> |
|||
* '''5003''' – [[Sophie Germain prime]] |
* '''5003''' – [[Sophie Germain prime]] |
||
* '''5004''' – 5004<sub>10</sub> → 3V0<sub>36</sub>, resembling 3 vs. 0<ref>https://www.rapidtables.com/convert/number/base-converter.html?x=5004&sel1=10&sel2=13</ref> |
|||
* '''5005''' – [[palindrome]], 5-dimensional pyramidal number<ref>https://oeis.org/A005585</ref> |
|||
* '''5006''' – [[binary number|base-2]] representation resembling a pattern (ignoring the "100" at the beginning and the "0" at the end)<ref>https://www.rapidtables.com/convert/number/base-converter.html?x=5006&sel1=10&sel2=13</ref> |
|||
* '''5007''' – [[semiprime]] |
|||
* '''5008''' – positive [[integer]] ''x'' such that x<sup>[[cube number|3]]</sup> = y<sup>4</sup> + z<sup>[[square number|2]]</sup> for some positive integers ''y'' and ''z''<ref>https://oeis.org/A266212</ref> |
|||
* '''5009''' – [[prime number]] which is the sum of 11 consecutive [[primes]] (can someone fill out the 11 consecutive [[primes]])<ref>https://oeis.org/A127340</ref> |
|||
* '''5010''' – number ''k'' such that k and k<sup>2</sup> use only the digits 0-3 and 5<ref>https://oeis.org/A136811</ref> |
|||
* '''5011''' – [[prime]] of the form 2n<sup>2</sup> + 11<ref>https://oeis.org/A050265</ref> |
|||
* '''5012''' – number ''n'' such that the [[decimal|base-10]] expansions of both n and n<sup>2</sup> have digits ranging from 0-5<ref>https://oeis.org/A256631</ref> |
|||
* '''5013''' – 5013<sub>10</sub> → 3V9<sub>36</sub>, resembling 3 vs. 9, making 5013 the largest number to resemble 3 vs. [digit]<ref>https://www.rapidtables.com/convert/number/base-converter.html</ref> |
|||
* '''5014''' – member of sequence "a(n) = (n*9n + 25)/2 + 6"<ref>https://oeis.org/A235332</ref> |
|||
* '''5015''' – [[nonary|base-9]] representation resembling a pattern (678 ignoring the ending 2)<ref>https://www.rapidtables.com/convert/number/base-converter.html</ref> |
|||
* '''5020''' – [[amicable number]] with 5564 |
* '''5020''' – [[amicable number]] with 5564 |
||
* '''5021''' – [[super-prime]], [[twin prime]] with 5023 |
* '''5021''' – [[super-prime]], [[twin prime]] with 5023 |
Revision as of 19:55, 1 May 2022
| ||||
---|---|---|---|---|
Cardinal | five thousand | |||
Ordinal | 5000th (five thousandth) | |||
Factorization | 23 × 54 | |||
Greek numeral | ,Ε´ | |||
Roman numeral | V | |||
Unicode symbol(s) | V, v, ↁ | |||
Binary | 10011100010002 | |||
Ternary | 202120123 | |||
Senary | 350526 | |||
Octal | 116108 | |||
Duodecimal | 2A8812 | |||
Hexadecimal | 138816 |
5000 (five thousand) is the natural number following 4999 and preceding 5001. Five thousand is the largest isogrammic number in the English language.
Look up five thousand in Wiktionary, the free dictionary.
Selected numbers in the range 5001–5999
5001 to 5099
- 5001 – trimorphic number[1]
- 5002 – two times a pentagonal number (initial pentagonal number being 2501)[2]
- 5003 – Sophie Germain prime
- 5004 – 500410 → 3V036, resembling 3 vs. 0[3]
- 5005 – palindrome, 5-dimensional pyramidal number[4]
- 5006 – base-2 representation resembling a pattern (ignoring the "100" at the beginning and the "0" at the end)[5]
- 5007 – semiprime
- 5008 – positive integer x such that x3 = y4 + z2 for some positive integers y and z[6]
- 5009 – prime number which is the sum of 11 consecutive primes (can someone fill out the 11 consecutive primes)[7]
- 5010 – number k such that k and k2 use only the digits 0-3 and 5[8]
- 5011 – prime of the form 2n2 + 11[9]
- 5012 – number n such that the base-10 expansions of both n and n2 have digits ranging from 0-5[10]
- 5013 – 501310 → 3V936, resembling 3 vs. 9, making 5013 the largest number to resemble 3 vs. [digit][11]
- 5014 – member of sequence "a(n) = (n*9n + 25)/2 + 6"[12]
- 5015 – base-9 representation resembling a pattern (678 ignoring the ending 2)[13]
- 5020 – amicable number with 5564
- 5021 – super-prime, twin prime with 5023
- 5023 – twin prime with 5021
- 5039 – factorial prime,[14] Sophie Germain prime
- 5040 = 7!, superior highly composite number
- 5041 = 712, centered octagonal number[15]
- 5050 – triangular number, Kaprekar number,[16] sum of first 100 integers
- 5051 – Sophie Germain prime
- 5059 – super-prime
- 5076 – decagonal number[17]
- 5081 – Sophie Germain prime
- 5087 – safe prime
- 5099 – safe prime
5100 to 5199
- 5107 – super-prime, balanced prime[18]
- 5113 – balanced prime[18]
- 5117 – sum of the first 50 primes
- 5151 – triangular number
- 5167 – Leonardo prime, cuban prime of the form x = y + 1[19]
- 5171 – Sophie Germain prime
- 5184 = 722
- 5186 – φ(5186) = 2592
- 5187 – φ(5187) = 2592
- 5188 – φ(5189) = 2592, centered heptagonal number[20]
- 5189 – super-prime
5200 to 5299
- 5209 - largest minimal prime in base 6
- 5226 – nonagonal number[21]
- 5231 – Sophie Germain prime
- 5244 = 222 + 232 + … + 292 = 202 + 212 + … + 282
- 5249 – highly cototient number[22]
- 5253 – triangular number
- 5279 – Sophie Germain prime, twin prime with 5281, 700th prime number
- 5280 is the number of feet in a mile.[23] It is divisible by three, yielding 1760 yards per mile and by 16.5, yielding 320 rods per mile. Also, 5280 is connected with both Klein's J-invariant and the Heegner numbers. Specifically:
- 5281 – super-prime, twin prime with 5279
- 5282 - used in various paintings by Thomas Kinkade[24][better source needed]
- 5292 – Kaprekar number[16]
5300 to 5399
- 5303 – Sophie Germain prime, balanced prime[18]
- 5329 = 732, centered octagonal number[15]
- 5333 – Sophie Germain prime
- 5335 – magic constant of n × n normal magic square and n-queens problem for n = 22.
- 5340 – octahedral number[25]
- 5356 – triangular number
- 5365 – decagonal number[17]
- 5381 – super-prime
- 5387 – safe prime, balanced prime[18]
- 5392 – Leyland number[26]
- 5393 – balanced prime[18]
- 5399 – Sophie Germain prime, safe prime
5400 to 5499
- 5405 – member of a Ruth–Aaron pair with 5406 (either definition)
- 5406 – member of a Ruth–Aaron pair with 5405 (either definition)
- 5419 – Cuban prime of the form x = y + 1[19]
- 5441 – Sophie Germain prime, super-prime
- 5456 – tetrahedral number[27]
- 5459 – highly cototient number[22]
- 5460 – triangular number
- 5461 – super-Poulet number,[28] centered heptagonal number[20]
- 5476 = 742
- 5483 – safe prime
5500 to 5599
- 5500 – nonagonal number[21]
- 5501 – Sophie Germain prime, twin prime with 5503
- 5503 – super-prime, twin prime with 5501, cousin prime with 5507
- 5507 – safe prime, cousin prime with 5503
- 5525 – square pyramidal number[29]
- 5527 – happy prime
- 5536 – tetranacci number[30]
- 5557 – super-prime
- 5563 – balanced prime
- 5564 – amicable number with 5020
- 5565 – triangular number
- 5566 – pentagonal pyramidal number[31]
- 5569 – happy prime
- 5571 – perfect totient number[32]
- 5581 – prime of the form 2p-1
5600 to 5699
- 5623 – super-prime
- 5625 = 752, centered octagonal number[15]
- 5639 – Sophie Germain prime, safe prime
- 5651 – super-prime
- 5659 – happy prime, completes the eleventh prime quadruplet set
- 5662 – decagonal number[17]
- 5671 – triangular number
5700 to 5799
- 5701 – super-prime
- 5711 – Sophie Germain prime
- 5719 – Zeisel number,[33] Lucas–Carmichael number[34]
- 5741 – Sophie Germain prime, Pell prime,[35] Markov prime,[36] centered heptagonal number[20]
- 5749 – super-prime
- 5768 – tribonacci number[37]
- 5776 = 762
- 5777 – smallest counterexample to the conjecture that all odd numbers are of the form p + 2a2
- 5778 – triangular number
- 5781 – nonagonal number[21]
- 5798 – Motzkin number[38]
5800 to 5899
- 5801 – super-prime
- 5807 – safe prime, balanced prime
- 5832 = 183
- 5842 – member of the Padovan sequence[39]
- 5849 – Sophie Germain prime
- 5869 – super-prime
- 5879 – safe prime, highly cototient number[22]
- 5886 – triangular number
5900 to 5999
- 5903 – Sophie Germain prime
- 5913 – sum of the first seven factorials
- 5927 – safe prime
- 5929 = 772, centered octagonal number[15]
- 5939 – safe prime
- 5967 – decagonal number[17]
- 5984 – tetrahedral number[27]
- 5995 – triangular number
Prime numbers
There are 114 prime numbers between 5000 and 6000:[40][41]
- 5003, 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987
References
- ^ https://oeis.org/A033819
- ^ https://oeis.org/A049450
- ^ https://www.rapidtables.com/convert/number/base-converter.html?x=5004&sel1=10&sel2=13
- ^ https://oeis.org/A005585
- ^ https://www.rapidtables.com/convert/number/base-converter.html?x=5006&sel1=10&sel2=13
- ^ https://oeis.org/A266212
- ^ https://oeis.org/A127340
- ^ https://oeis.org/A136811
- ^ https://oeis.org/A050265
- ^ https://oeis.org/A256631
- ^ https://www.rapidtables.com/convert/number/base-converter.html
- ^ https://oeis.org/A235332
- ^ https://www.rapidtables.com/convert/number/base-converter.html
- ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c d e "Sloane's A006562 : Balanced primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c "Sloane's A069099 : Centered heptagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b c "Sloane's A100827 : Highly cototient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Weights and measures". www.merriam-webster.com. Merriam-Webster. Retrieved 11 March 2021.
- ^ https://gawker.com/my-14-hour-search-for-the-end-of-tgi-fridays-endless-ap-1606122925
- ^ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ a b "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A082897 : Perfect totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A006972 : Lucas-Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-13.
- ^ "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
- ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.