Jump to content

Basilosauridae: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Citation bot (talk | contribs)
Alter: pages. Add: s2cid, pmid. Formatted dashes. | Use this bot. Report bugs. | Suggested by Abductive | Category:Paraphyletic groups | #UCB_Category 66/123
Pryftan213 (talk | contribs)
Systematics: Eocetus is not considered to be a basilosaurid and should not listed here
Tag: Reverted
Line 32: Line 32:
*** Genus ''[[Basiloterus]]''
*** Genus ''[[Basiloterus]]''
*** Genus ''[[Basilotritus]]''
*** Genus ''[[Basilotritus]]''
*** Genus ''[[Eocetus]]''
*** Genus ''[[Platyosphys]]''
*** Genus ''[[Platyosphys]]''
** Subfamily [[Dorudontinae]]
** Subfamily [[Dorudontinae]]

Revision as of 04:07, 4 May 2022

Basilosauridae
Temporal range: 43–33.9 Ma Lutetian to Priabonian[1]
Skull of the genus Saghacetus.
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Infraorder: Cetacea
Family: Basilosauridae
Cope 1868[1]
Genera

See text

Basilosauridae is a family of extinct cetaceans. They lived during the middle to the early late Eocene and are known from all continents, including Antarctica.[1][2] They were probably the first fully aquatic cetaceans.[3][4] The group is noted to be a paraphyletic assemblage of stem group whales[5] from which the monophyletic Neoceti are derived.[6]

Characteristics

Drawing of Dorudon skeleton.
Cynthiacetus, mounted skeleton.
Zygorhiza, mounted skeleton.

Basilosaurids ranged in size from 4 to 16 m (13 to 52 ft) and were fairly similar to modern cetaceans in overall body form and function.[7] Some genera tend to show signs of convergent evolution with mosasaurs by having long serpentine body shape, which suggests that this body plan seems to have been rather successful.[8] Basilosaurid forelimbs have broad and fan-shaped scapulae attached to a humerus, radius, and ulna which are flattened into a plane to which the elbow joint was restricted, effectively making pronation and supination impossible. Because of a shortage of forelimb fossils from other archaeocetes, it is not known if this arrangement is unique to basilosaurids, as some of the characteristics are also seen in Georgiacetus.[3]

As archaeocetes, Basilosaurids lacked the telescoping skull of present whales. Their jaws were powerful,[9] with a dentition easily distinguishable from that of other archaeocetes: they lack upper third molars and the upper molars lack protocones, trigon basins, and lingual third roots. The cheek teeth have well-developed accessory denticles.

Unlike modern whales, basilosaurids possessed small hindlimbs with well defined femur, lower leg and feet. They were, however, very small and did not articulate with the vertebral column, which also lack true sacral vertebrae.[3] While they were unable to support body weight on land, they might have assisted as claspers during copulation.[10] Analysis of tail vertebrate from Basilosaurus and Dorudon indicate they possessed small flukes.[11]

Taxonomy

Basilosaurinae was proposed as a subfamily containing two genera: Basilosaurus and Basiloterus.[12] They were characterized by elongated distal thoracic vertebrae, lumbar, and proximal sacrococcygeal. All known members of the subfamily are larger than their relatives of the Dorudontinae subfamily except Cynthiacetus.[13] It was declared an invalid subgroup of Basilosauridae by Uhen 2013.[12]

Systematics

See also

Notes

  1. ^ a b c Basilosauridae in the Paleobiology Database
  2. ^ Fostowicz-Frelik 2003
  3. ^ a b c Uhen 2002
  4. ^ Buono M, Fordyce R.E., Marx F.G., Fernández M.S. & Reguero M. (2019). "Eocene Antarctica: a window into the earliest history of modern whales". Advances in Polar Science 30(3): p. 293-302. doi: 10.13679/j.advps.2019.0005
  5. ^ Lloyd, G. T.; Slater, G. J. (2021). "A total-group phylogenetic metatree for Cetacea and the importance of fossil data in diversification analyses". Systematic Biology. 70 (5): 922–939. doi:10.1093/sysbio/syab002. PMID 33507304.
  6. ^ Davydenko, S.; Shevchenko, T.; Ryabokon, T.; Tretiakov, R.; Gol’din, P. (2021). "A Giant Eocene Whale from Ukraine Uncovers Early Cetacean Adaptations to the Fully Aquatic Life". Evolutionary Biology. 48 (1): 67–80. doi:10.1007/s11692-020-09524-8. S2CID 230110031.
  7. ^ Uhen M. (2004). "Form, Function, and Anatomy of Dorudon Atrox (Mammalia, Cetacea): An Archaeocete from the Middle to Late Eocene of Egypt". Papers on Paleontology 34: p. 1-222
  8. ^ Oceans of Kansas: a Natural History of the Western Interior Sea. Indiana University Press. 2005. ISBN 9780253345479.
  9. ^ Snively E, Fahlke J.M. & Welsh R.C. (2015). "Bone-Breaking Bite Force of Basilosaurus isis (Mammalia, Cetacea) from the Late Eocene of Egypt Estimated by Finite Element Analysis". PLOS ONE 10(2): e0118380
  10. ^ Gingerich P.D., Smith B.H., Simons E.L. (1990). "Hind limbs of eocene basilosaurus: evidence of feet in whales". Science 249(4965): p. 154–157. doi:10.1126/science.249.4965.154
  11. ^ Philip D. Gingerich, Mohammed Sameh M. Antar und Iyad S. Zalmot: "Aegicetus gehennae, a new late Eocene protocetid (Cetacea, Archaeoceti) from Wadi Al Hitan, Egypt, and the transition to tail-powered swimming in whales". PLoS ONE 14(12): e0225391 doi:10.1371/journal.pone.0225391
  12. ^ a b Basilosauridae in the Paleobiology Database. Retrieved July 2013.
  13. ^ Uhen 2008

References