Jump to content

Equivalence of metrics: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit
Line 8: Line 8:
The two metrics <math>d_1</math> and <math>d_2</math> are said to be '''topologically equivalent''' if they generate the same [[topology]] on <math>X</math>. The adjective "topological" is often dropped.<ref>Bishop and Goldberg, p. 10.</ref> There are multiple ways of expressing this condition:
The two metrics <math>d_1</math> and <math>d_2</math> are said to be '''topologically equivalent''' if they generate the same [[topology]] on <math>X</math>. The adjective "topological" is often dropped.<ref>Bishop and Goldberg, p. 10.</ref> There are multiple ways of expressing this condition:
* a subset <math>A \subseteq X</math> is <math>d_1</math>-[[open set|open]] [[if and only if]] it is <math>d_2</math>-open;
* a subset <math>A \subseteq X</math> is <math>d_1</math>-[[open set|open]] [[if and only if]] it is <math>d_2</math>-open;
* the [[open ball]]s "nest": for any point <math>x \in X</math> and any radius <math>r > 0</math>, there exist radii <math>r', r'' > 0</math> such that
* the [[open ball]]s "nest": for any point <math>x \in X</math> and any radius <math>r > 0</math>, there exist radii <math>r', r'' > 0</math> such that <math display="block">B_{r'} (x; d_1) \subseteq B_r (x; d_2) \text{ and } B_{r''} (x; d_2) \subseteq B_r (x; d_1).</math>
:: <math>B_{r'} (x; d_1) \subseteq B_r (x; d_2) \text{ and } B_{r''} (x; d_2) \subseteq B_r (x; d_1).</math>
* the [[identity function]] <math>I : X \to X</math> is both <math>(d_1, d_2)</math>-[[continuous function|continuous]] and <math>(d_2, d_1)</math>-continuous.
* the [[identity function]] <math>I : X \to X</math> is both <math>(d_1, d_2)</math>-[[continuous function|continuous]] and <math>(d_2, d_1)</math>-continuous.


The following are sufficient but not necessary conditions for topological equivalence:
The following are sufficient but not necessary conditions for topological equivalence:
* there exists a strictly increasing, continuous, and [[subadditive]] <math>f:\mathbb{R} \to \mathbb{R}_{+}</math> such that <math>d_2 = f \circ d_1 </math>.<ref>Ok, p. 127, footnote 12.</ref>
* there exists a strictly increasing, continuous, and [[subadditive]] <math>f: \R \to \R_+</math> such that <math>d_2 = f \circ d_1 </math>.<ref>Ok, p. 127, footnote 12.</ref>
* for each <math>x \in X</math>, there exist positive constants <math>\alpha</math> and <math>\beta</math> such that, for every point <math>y \in X</math>,
* for each <math>x \in X</math>, there exist positive constants <math>\alpha</math> and <math>\beta</math> such that, for every point <math>y \in X</math>, <math display="block">\alpha d_1 (x, y) \leq d_2 (x, y) \leq \beta d_1 (x, y).</math>
:: <math>\alpha d_1 (x, y) \leq d_2 (x, y) \leq \beta d_1 (x, y).</math>


==Strong equivalence==
==Strong equivalence==

Revision as of 17:20, 7 May 2022

In the study of metric spaces in mathematics, there are various notions of two metrics on the same underlying space being "the same", or equivalent.

In the following, will denote a non-empty set and and will denote two metrics on .

Topological equivalence

The two metrics and are said to be topologically equivalent if they generate the same topology on . The adjective "topological" is often dropped.[1] There are multiple ways of expressing this condition:

  • a subset is -open if and only if it is -open;
  • the open balls "nest": for any point and any radius , there exist radii such that
  • the identity function is both -continuous and -continuous.

The following are sufficient but not necessary conditions for topological equivalence:

  • there exists a strictly increasing, continuous, and subadditive such that .[2]
  • for each , there exist positive constants and such that, for every point ,

Strong equivalence

Two metrics and are strongly equivalent if and only if there exist positive constants and such that, for every ,

In contrast to the sufficient condition for topological equivalence listed above, strong equivalence requires that there is a single set of constants that holds for every pair of points in , rather than potentially different constants associated with each point of .

Strong equivalence of two metrics implies topological equivalence, but not vice versa. An intuitive reason why topological equivalence does not imply strong equivalence is that bounded sets under one metric are also bounded under a strongly equivalent metric, but not necessarily under a topologically equivalent metric.

When the two metrics are those induced by norms respectively, then strong equivalence is equivalent to the condition that, for all ,

In finite dimensional spaces, all metrics induced by the p-norm, including the euclidean metric, the taxicab metric, and the Chebyshev distance, are strongly equivalent.[3]

Properties preserved by equivalence

  • The continuity of a function is preserved if either the domain or range is remetrized by an equivalent metric, but uniform continuity is preserved only by strongly equivalent metrics.[4]
  • The differentiability of a function , for a normed space and a subset of a normed space, is preserved if either the domain or range is renormed by a strongly equivalent norm.[5]
  • A metric that is strongly equivalent to a complete metric is also complete; the same is not true of equivalent metrics because homeomorphisms do not preserve completeness. For example, since and are homeomorphic, the homeomorphism induces a metric on which is complete because is, and generates the same topology as the usual one, yet with the usual metric is not complete, because the sequence is Cauchy but not convergent. (It is not Cauchy in the induced metric.)

Notes

  1. ^ Bishop and Goldberg, p. 10.
  2. ^ Ok, p. 127, footnote 12.
  3. ^ Ok, p. 138.
  4. ^ Ok, p. 209.
  5. ^ Cartan, p. 27.

References

  • Richard L. Bishop; Samuel I. Goldberg (1980). Tensor analysis on manifolds. Dover Publications.
  • Efe Ok (2007). Real analysis with economics applications. Princeton University Press. ISBN 0-691-11768-3.
  • Henri Cartan (1971). Differential Calculus. Kershaw Publishing Company LTD. ISBN 0-395-12033-0.