Jump to content

Unary coding: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 105: Line 105:
|}
|}
==Canonical unary codes==
==Canonical unary codes==
For unary values where the maximum is known, one can use canonical unary codes that are of a somewhat numerical nature and different from character based codes. It involves starting with numerical '0' or '1' and the maximum number of digits then for each step reducing the number of digits by one and increasing/decreasing the result by numerical '1'.
For unary values where the maximum is known, one can use canonical unary codes that are of a somewhat numerical nature and different from character based codes. It involves starting with numerical '0' or '-1' ( <math>\operatorname2^{n+1} - 1\,</math>) and the maximum number of digits then for each step reducing the number of digits by one and increasing/decreasing the result by numerical '1'.
{| class="wikitable"
{| class="wikitable"
! n !! Unary code
! n !! Unary code

Revision as of 12:54, 10 July 2022

Unary coding,[nb 1] or the unary numeral system and also sometimes called thermometer code, is an entropy encoding that represents a natural number, n, with a code of length n + 1 ( or n ), usually n ones followed by a zero (if natural number is understood as non-negative integer) or with n − 1 ones followed by a zero (if natural number is understood as strictly positive integer). For example 5 is represented as 111110 or 11110. Some representations use n or n − 1 zeros followed by a one. The ones and zeros are interchangeable without loss of generality. Unary coding is both a prefix-free code and a self-synchronizing code.

n (non-negative) n (strictly positive) Unary code Alternative
0 1 0 1
1 2 10 01
2 3 110 001
3 4 1110 0001
4 5 11110 00001
5 6 111110 000001
6 7 1111110 0000001
7 8 11111110 00000001
8 9 111111110 000000001
9 10 1111111110 0000000001

Unary coding is an optimally efficient encoding for the following discrete probability distribution

for .

In symbol-by-symbol coding, it is optimal for any geometric distribution

for which k ≥ φ = 1.61803398879…, the golden ratio, or, more generally, for any discrete distribution for which

for . Although it is the optimal symbol-by-symbol coding for such probability distributions, Golomb coding achieves better compression capability for the geometric distribution because it does not consider input symbols independently, but rather implicitly groups the inputs. For the same reason, arithmetic encoding performs better for general probability distributions, as in the last case above.

Unary code in use today

Examples of unary code uses include:

  • In Golomb Rice code, unary encoding is used to encode the quotient part of the Golomb code word.
  • In UTF-8, unary encoding is used in the leading byte of a multi-byte sequence to indicate the number of bytes in the sequence so that the length of the sequence can be determined without examining the continuation bytes.
  • Instantaneously trained neural networks use unary coding for efficient data representation.

Unary coding in biological networks

Unary coding is used in the neural circuits responsible for birdsong production.[1][2] The nucleus in the brain of the songbirds that plays a part in both the learning and the production of bird song is the HVC (high vocal center). The command signals for different notes in the birdsong emanate from different points in the HVC. This coding works as space coding which is an efficient strategy for biological circuits due to its inherent simplicity and robustness.

Standard run-length unary codes

All binary data is defined by the ability to represent unary numbers in alternating run-lengths of 1s and 0s. This conforms to the standard definition of unary ie N digits of the same number 1 or 0. All run-lengths by definition have at least one digit and thus represent strictly positive integers.

n RL code Next code
1 1 0
2 11 00
3 111 000
4 1111 0000
5 11111 00000
6 111111 000000
7 1111111 0000000
8 11111111 00000000
9 111111111 000000000
10 1111111111 0000000000
...

Uniquely decodable non-prefix unary codes

Following is an example of uniquely decodable unary codes that is not a prefix code and is not instantaneously decodable (need look-ahead to decode)

n Unary code
1 1
2 10
3 100
4 1000
5 10000
6 100000
7 1000000
8 10000000
9 100000000
10 1000000000
...

Canonical unary codes

For unary values where the maximum is known, one can use canonical unary codes that are of a somewhat numerical nature and different from character based codes. It involves starting with numerical '0' or '-1' ( ) and the maximum number of digits then for each step reducing the number of digits by one and increasing/decreasing the result by numerical '1'.

n Unary code Alternative
1 1 0
2 01 10
3 001 110
4 0001 1110
5 00001 11110
6 000001 111110
7 0000001 1111110
8 00000001 11111110
9 000000001 111111110
10 0000000000 1111111111

Canonical codes can require less processing time to decode when they are processed as numbers not a string. If the number of codes required per symbol length is different to 1, ie there are more non-unary codes of some length required, those would be achieved by increasing/decreasing the values numerically without reducing the length in that case.

Generalized unary coding

A generalized version of unary coding was presented by Subhash Kak to represent numbers much more efficiently than standard unary coding.[3] Here's an example of generalized unary coding for integers from 0 through 15 that requires only 7 bits (where three bits are arbitrarily chosen in place of a single one in standard unary to show the number). Note that the representation is cyclic where one uses markers to represent higher integers in higher cycles.

n Unary code Generalized unary
0 0 0000000
1 10 0000111
2 110 0001110
3 1110 0011100
4 11110 0111000
5 111110 1110000
6 1111110 0010111
7 11111110 0101110
8 111111110 1011100
9 1111111110 0111001
10 11111111110 1110010
11 111111111110 0100111
12 1111111111110 1001110
13 11111111111110 0011101
14 111111111111110 0111010
15 1111111111111110 1110100

Generalized unary coding requires that the range of numbers to be represented to be pre-specified because this range determines the number of bits that are needed.

See also

Notes

  1. ^ The equivalent to the term "unary coding" in German scientific literature is "BCD-Zählcode", which would translate into "binary-coded decimal counting code". This must not be confused with the similar German term "BCD-Code" translating to BCD code in English.

References

  1. ^ Fiete, I. R.; Seung, H. S. (2007). "Neural network models of birdsong production, learning, and coding". In Squire, L.; Albright, T.; Bloom, F.; Gage, F.; Spitzer, N. (eds.). New Encyclopedia of Neuroscience. Elsevier.
  2. ^ Moore, J. M.; et al. (2011). "Motor pathway convergence predicts syllable repertoire size in oscine birds". Proc. Natl. Acad. Sci. USA. 108 (39): 16440–16445. Bibcode:2011PNAS..10816440M. doi:10.1073/pnas.1102077108. PMC 3182746. PMID 21918109.
  3. ^ Kak, S. (2015). "Generalized unary coding". Circuits, Systems and Signal Processing. 35 (4): 1419–1426. doi:10.1007/s00034-015-0120-7. S2CID 27902257.