PyMC: Difference between revisions
Aloctavodia (talk | contribs) |
Updated Repository to most recent version |
||
Line 1: | Line 1: | ||
{{Infobox software |
{{Infobox software |
||
| name |
| name = PyMC |
||
| author |
| author = PyMC Development Team |
||
| released |
| released = {{Start date|2013|05|04}} |
||
| discontinued |
| discontinued = |
||
| latest release version = 4.1.1 |
| latest release version = 4.1.1 |
||
| latest release date |
| latest release date = {{Start date|2022|07|04}} |
||
| repo = https://github.com/pymc-devs/pymc |
|||
| programming language |
| programming language = [[Python (programming language)|Python]] |
||
| operating system = [[Unix-like]], [[Mac OS X]], [[Microsoft Windows]] |
|||
| |
| operating system = [[Unix-like]], [[Mac OS X]], [[Microsoft Windows]] |
||
| platform = [[IA-32|Intel x86 – 32-bit]], [[x86-64|x64]] |
|||
| genre |
| genre = [[Statistical package]] |
||
| license |
| license = [[Apache License| Apache License, Version 2.0]] |
||
| website |
| website = {{URL|https://docs.pymc.io/}} |
||
}} |
}} |
||
Revision as of 16:17, 15 July 2022
Original author(s) | PyMC Development Team |
---|---|
Initial release | May 4, 2013 |
Stable release | 4.1.1
/ July 4, 2022 |
Repository | https://github.com/pymc-devs/pymc |
Written in | Python |
Operating system | Unix-like, Mac OS X, Microsoft Windows |
Platform | Intel x86 – 32-bit, x64 |
Type | Statistical package |
License | Apache License, Version 2.0 |
Website | docs |
PyMC (formerly known as PyMC3) is a Python package for Bayesian statistical modeling and probabilistic machine learning which focuses on advanced Markov chain Monte Carlo and variational fitting algorithms.[1][2][3] [4] It is a rewrite from scratch of the previous version of the PyMC software.[5] Unlike PyMC2, which had used Fortran extensions for performing computations, PyMC relies on Aesara, a Python library that allows to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays. From version 3.8 PyMC relies on ArviZ to handle plotting, diagnostics, and statistical checks. PyMC and Stan are the two most popular probabilistic programming tools.[6] PyMC is an open source project, developed by the community and fiscally sponsored by NumFOCUS.[7]
PyMC has been used to solve inference problems in several scientific domains, including astronomy,[8][9] epidemiology,[10][11] molecular biology,[12] crystallography,[13] [14] chemistry,[15] ecology[16][17] and psychology.[18] Previous versions of PyMC were also used widely, for example in climate science,[19] public health,[20] neuroscience,[21] and parasitology.[22] [23]
After Theano announced plans to discontinue development in 2017,[24] the PyMC team evaluated TensorFlow Probability as a computational backend,[25] but decided in 2020 to take over the development of Theano.[26] Large parts of the Theano codebase have been refactored and compilation through JAX[27] and Numba were added. The PyMC team has released the revised computational backend under the name Aesara and continue the development of PyMC.[28]
Inference engines
PyMC implements non-gradient-based and gradient-based Markov chain Monte Carlo (MCMC) algorithms for Bayesian inference and stochastic, gradient-based variational Bayesian methods for approximate Bayesian inference.
- MCMC-based algorithms:
- No-U-Turn sampler[29] (NUTS), a variant of Hamiltonian Monte Carlo and PyMC's default engine for continuous variables
- Metropolis–Hastings, PyMC's default engine for discrete variables
- Sequential Monte Carlo for static posteriors
- Sequential Monte Carlo for approximate Bayesian computation
- Variational inference algorithms:
- Black-box Variational Inference[30]
See also
- Stan is a probabilistic programming language for statistical inference written in C++
- ArviZ a Python library for Exploratory Analysis of Bayesian Models
References
- ^ Salvatier J, Wiecki TV, Fonnesbeck C. (2016) Probabilistic programming in Python using PyMC3. PeerJ Computer Science 2:e55 doi:10.7717/peerj-cs.55
- ^ Martin, Osvaldo (2016). Bayesian Analysis with Python. Packt Publishing Ltd. pp. 31–60. ISBN 9781785889851. Retrieved 16 September 2017.
- ^ Martin, Osvaldo; Kumar, Ravin; Lao, Junpeng (2021). Bayesian Modeling and Computation in Python. CRC-press. pp. 1–420. ISBN 9780367894368. Retrieved 7 July 2022.
- ^ Davidson-Pilon, Cameron (2015-09-30). Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference. Addison-Wesley Professional. ISBN 9780133902921.
- ^ "Introduction — PyMC3 3.1 documentation". docs.pymc.io. Retrieved 2017-09-20.
- ^ "The Algorithms Behind Probabilistic Programming". Retrieved 2017-03-10.
- ^ "NumFOCUS Announces New Fiscally Sponsored Project: PyMC3". NumFOCUS | Open Code = Better Science. Retrieved 2017-03-10.
- ^ Greiner, J.; Burgess, J. M.; Savchenko, V.; Yu, H.-F. (2016). "On the Fermi-GBM Event 0.4 s after GW150914". The Astrophysical Journal Letters. 827 (2): L38. arXiv:1606.00314. Bibcode:2016ApJ...827L..38G. doi:10.3847/2041-8205/827/2/L38. ISSN 2041-8205.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Hilbe, Joseph M.; Souza, Rafael S. de; Ishida, Emille E. O. (2017-04-30). Bayesian Models for Astrophysical Data: Using R, JAGS, Python, and Stan. Cambridge University Press. ISBN 9781108210744.
- ^ Brauner, Jan M.; Mindermann, Sören; Sharma, Mrinank; Johnston, David; Salvatier, John; Gavenčiak, Tom; Stephenson, Anna B.; Leech, Gavin; Altman, George; Mikulik, Vladimir; Norman, Alexander John; Monrad, Joshua Teperowski; Besiroglu, Tamay; Ge, Hong; Hartwick, Meghan A.; Teh, Yee Whye; Chindelevitch, Leonid; Gal, Yarin; Kulveit, Jan (2020-12-15). "Inferring the effectiveness of government interventions against COVID-19". Science. 371 (6531): eabd9338. doi:10.1126/science.abd9338. PMC 7877495. PMID 33323424.
- ^ Systrom, Kevin; Vladek, Thomas; Krieger, Mike. "Rt.live Github repository". Rt.live. Retrieved 10 January 2021.
- ^ Wagner, Stacey D.; Struck, Adam J.; Gupta, Riti; Farnsworth, Dylan R.; Mahady, Amy E.; Eichinger, Katy; Thornton, Charles A.; Wang, Eric T.; Berglund, J. Andrew (2016-09-28). "Dose-Dependent Regulation of Alternative Splicing by MBNL Proteins Reveals Biomarkers for Myotonic Dystrophy". PLOS Genetics. 12 (9): e1006316. doi:10.1371/journal.pgen.1006316. ISSN 1553-7404. PMC 5082313. PMID 27681373.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Sharma, Amit; Johansson, Linda; Dunevall, Elin; Wahlgren, Weixiao Y.; Neutze, Richard; Katona, Gergely (2017-03-01). "Asymmetry in serial femtosecond crystallography data". Acta Crystallographica Section A. 73 (2): 93–101. doi:10.1107/s2053273316018696. ISSN 2053-2733. PMC 5332129. PMID 28248658.
- ^ Katona, Gergely; Garcia-Bonete, Maria-Jose; Lundholm, Ida (2016-05-01). "Estimating the difference between structure-factor amplitudes using multivariate Bayesian inference". Acta Crystallographica Section A. 72 (3): 406–411. doi:10.1107/S2053273316003430. ISSN 2053-2733. PMC 4850660. PMID 27126118.
- ^ Garay, Pablo G.; Martin, Osvaldo A.; Scheraga, Harold A.; Vila, Jorge A. (2016-07-21). "Detection of methylation, acetylation and glycosylation of protein residues by monitoring13C chemical-shift changes: A quantum-chemical study". PeerJ. 4: e2253. doi:10.7717/peerj.2253. ISSN 2167-8359. PMC 4963218. PMID 27547559.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Wang, Yan; Huang, Hong; Huang, Lida; Ristic, Branko (2017). "Evaluation of Bayesian source estimation methods with Prairie Grass observations and Gaussian plume model: A comparison of likelihood functions and distance measures". Atmospheric Environment. 152: 519–530. Bibcode:2017AtmEn.152..519W. doi:10.1016/j.atmosenv.2017.01.014.
- ^ MacNeil, M. Aaron; Chong-Seng, Karen M.; Pratchett, Deborah J.; Thompson, Casssandra A.; Messmer, Vanessa; Pratchett, Morgan S. (2017-03-14). "Age and Growth of An Outbreaking Acanthaster cf. solaris Population within the Great Barrier Reef". Diversity. 9 (1): 18. doi:10.3390/d9010018.
- ^ Tünnermann, Jan; Scharlau, Ingrid (2016). "Peripheral Visual Cues: Their Fate in Processing and Effects on Attention and Temporal-Order Perception". Frontiers in Psychology. 7: 1442. doi:10.3389/fpsyg.2016.01442. ISSN 1664-1078. PMC 5052275. PMID 27766086.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Graham, Nicholas A. J.; Jennings, Simon; MacNeil, M. Aaron; Mouillot, David; Wilson, Shaun K. (2015). "Predicting climate-driven regime shifts versus rebound potential in coral reefs". Nature. 518 (7537): 94–97. Bibcode:2015Natur.518...94G. doi:10.1038/nature14140. PMID 25607371.
- ^ Mascarenhas, Maya N.; Flaxman, Seth R.; Boerma, Ties; Vanderpoel, Sheryl; Stevens, Gretchen A. (2012-12-18). "National, Regional, and Global Trends in Infertility Prevalence Since 1990: A Systematic Analysis of 277 Health Surveys". PLOS Medicine. 9 (12): e1001356. doi:10.1371/journal.pmed.1001356. ISSN 1549-1676. PMC 3525527. PMID 23271957.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Cavanagh, James F; Wiecki, Thomas V; Cohen, Michael X; Figueroa, Christina M; Samanta, Johan; Sherman, Scott J; Frank, Michael J (2011). "Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold". Nature Neuroscience. 14 (11): 1462–1467. doi:10.1038/nn.2925. PMC 3394226. PMID 21946325.
- ^ Gething, Peter W.; Elyazar, Iqbal R. F.; Moyes, Catherine L.; Smith, David L.; Battle, Katherine E.; Guerra, Carlos A.; Patil, Anand P.; Tatem, Andrew J.; Howes, Rosalind E. (2012-09-06). "A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010". PLOS Neglected Tropical Diseases. 6 (9): e1814. doi:10.1371/journal.pntd.0001814. ISSN 1935-2735. PMC 3435256. PMID 22970336.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Pullan, Rachel L.; Smith, Jennifer L.; Jasrasaria, Rashmi; Brooker, Simon J. (2014-01-21). "Global numbers of infection and disease burden of soil transmitted helminth infections in 2010". Parasites & Vectors. 7: 37. doi:10.1186/1756-3305-7-37. ISSN 1756-3305. PMC 3905661. PMID 24447578.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Lamblin, Pascal (28 September 2017). "MILA and the future of Theano". theano-users (Mailing list). Retrieved 28 September 2017.
- ^ Developers, PyMC (2018-05-17). "Theano, TensorFlow and the Future of PyMC". PyMC Developers. Retrieved 2019-01-25.
- ^ "The Future of PyMC3, or: Theano is Dead, Long Live Theano". PyMC Developers. Retrieved 10 January 2021.
- ^ Bradbury, James; Frostig, Roy; Hawkins, Peter; James, Matthew James; Leary, Chris; Maclaurin, Dougal; Necula, George; Paszke, Adam; VanderPlas, Jake; Wanderman-Milne, Skye; Zhang, Qiao. "JAX". Retrieved 10 January 2021.
- ^ "PyMC Timeline". PyMC Timeline. Retrieved 10 January 2021.
- ^ Hoffman, Matthew D.; Gelman, Andrew (April 2014). "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo". Journal of Machine Learning Research. 15: pp. 1593–1623.
- ^ Kucukelbir, Alp; Ranganath, Rajesh; Blei, David M. (June 2015). "Automatic Variational Inference in Stan". 1506 (3431). arXiv:1506.03431. Bibcode:2015arXiv150603431K.
{{cite journal}}
: Cite journal requires|journal=
(help)
Further reading
External links
- PyMC web site
- PyMC source, a Git repository hosted on GitHub
- Symbolic PyMC is an experimental set of tools that facilitate sophisticated symbolic manipulation of PyMC models