Haag–Łopuszański–Sohnius theorem: Difference between revisions
m nav box |
m More precise category. |
||
Line 30: | Line 30: | ||
{{DEFAULTSORT:Haag-Łopuszański-Sohnius theorem}} |
{{DEFAULTSORT:Haag-Łopuszański-Sohnius theorem}} |
||
[[Category:Quantum field theory]] |
[[Category:Quantum field theory]] |
||
[[Category: |
[[Category:Supersymmetric quantum field theory]] |
||
[[Category:Theorems in quantum mechanics]] |
[[Category:Theorems in quantum mechanics]] |
Revision as of 16:43, 27 July 2022
In theoretical physics, the Haag–Łopuszański–Sohnius theorem shows that the possible symmetries of a consistent 4-dimensional quantum field theory do not only consist of internal symmetries and Poincaré symmetry, but can also include supersymmetry with central charges (CCs) as a nontrivial extension of the Poincaré algebra. Supersymmetry without CCs was discovered in 1971 by Yuri Golfand and E. P. Likhtman who generalized the Coleman–Mandula theorem.
One of the important results is that the fermionic part of the Lie superalgebra has to have spin-1/2 (spin 3/2 or higher are ruled out).
History
Prior to the Haag–Łopuszański–Sohnius theorem, the Coleman–Mandula theorem was the strongest of a series of no-go theorems, stating that the symmetry group of a consistent 4-dimensional quantum field theory is the direct product of the internal symmetry group and the Poincaré group.
In 1971 Yuri Golfand and E. P. Likhtman published the first paper on four-dimensional supersymmetry which presented (in modern notation) N=1 superalgebra and N=1 super-QED with charged matter and a mass term for the photon field. They proved that the conserved supercharges can exist in four dimensions by allowing both commuting and anticommuting symmetry generators, thus providing a nontrivial extension of the Poincaré algebra, namely the supersymmetry algebra. In 1975, Rudolf Haag, Jan Łopuszański, and Martin Sohnius further generalized superalgebras by analyzing extended supersymmetries (e.g. N=2) and introducing additional central charges.
Importance
What is most fundamental in this result (and thus in supersymmetry), is that there can be an interplay of spacetime symmetry with internal symmetry (in the sense of "mixing particles"): the supersymmetry generators transform bosonic particles into fermionic ones and vice versa, but the anticommutator of two such transformations yields a translation in spacetime. Precisely such an interplay seemed excluded by the Coleman–Mandula theorem, which stated that (bosonic) internal symmetries cannot interact non-trivially with spacetime symmetry.
This theorem was also an important justification of the previously found Wess–Zumino model, an interacting four-dimensional quantum field theory with supersymmetry, leading to a renormalizable theory.
Limitations
The theorem only deals with "visible symmetries, i.e., with symmetries of the S-matrix" and thus it is still possible that "the fundamental equations may have a higher symmetry". Expressed differently, this means the theorem does not restrict broken symmetry, but only unbroken symmetries.
See also
References
- Haag, Rudolf; Sohnius, Martin; Łopuszański, Jan T. (1975), "All possible generators of supersymmetries of the S-matrix", Nuclear Physics B, 88: 257–274, Bibcode:1975NuPhB..88..257H, doi:10.1016/0550-3213(75)90279-5, MR 0411396