Polar aprotic solvent: Difference between revisions
Appearance
Content deleted Content added
m →top: Copyedit (minor) |
m →top: actually, better to expand in the comments |
||
Line 6: | Line 6: | ||
! Solvent |
! Solvent |
||
! [[Chemical formula]] |
! [[Chemical formula]] |
||
! [[Boiling point]] |
! [[Boiling point]] |
||
! [[Dielectric constant]] |
! [[Dielectric constant]] |
||
! [[Density]] |
! [[Density]] |
||
Line 79: | Line 79: | ||
|1.03 g/cm<sup>3</sup> |
|1.03 g/cm<sup>3</sup> |
||
|5.38 |
|5.38 |
||
|| high |
|| high boiling point, high toxicity |
||
|- bgcolor="#FFEEEE" |
|- bgcolor="#FFEEEE" |
||
| [[pyridine]] |
| [[pyridine]] |
||
Line 95: | Line 95: | ||
| 1.27 g/cm<sup>3</sup> |
| 1.27 g/cm<sup>3</sup> |
||
| 4.8 |
| 4.8 |
||
| high |
| high boiling point |
||
|- bgcolor="#FFEEEE" |
|- bgcolor="#FFEEEE" |
||
| [[tetrahydrofuran]] |
| [[tetrahydrofuran]] |
Revision as of 11:49, 17 August 2022
A polar aprotic solvent is a solvent that lacks an acidic proton and is polar. Such solvents lack hydroxyl and amine groups. In contrast to protic solvents, these solvents do not serve as proton donors in hydrogen bonding, although they can be proton acceptors. Many solvents, including chlorocarbons and hydrocarbons, are classifiable as aprotic, but polar aprotic solvents are of particular interest for their ability to dissolve salts.[1][2] Methods for purification of common solvents are available[3]
Solvent | Chemical formula | Boiling point | Dielectric constant | Density | Dipole moment (D) | Comment |
---|---|---|---|---|---|---|
Polar aprotic solvents | ||||||
acetone | C3H6O | 56.05 °C | 21.83 | 0.7845 g/cm3 | 2.91 | reacts with strong acids and bases |
acetonitrile | CH3CN | 81.3 - 82.1 °C | 38.3 | 0.776 g/cm3 | 3.20 | reacts with strong acids and bases |
dichloromethane | CH2Cl2 | 39.6 °C | 9.08 | 1.3266 g/cm3 | 1.6 | |
dimethylformamide | (CH3)2NCHO | 153 °C | 36.7 | 0.95 g/cm3 | 3.86 | reacts with strong bases |
dimethylpropyleneurea | (CH3)2C4H6N2O | 246.5 °C | 36.12 | 1.064 g/cm3 | 4.23 | high b.p. |
dimethylsulfoxide | (CH3)2SO | 189 °C | 46.7 | 1.1 g/cm3 | 3.96 | reacts with strong bases, difficult to purify |
ethyl acetate | C4H8O2 | 77.11°C | 6.02 | 0.902 g/cm3 | 1.88 | reacts with strong bases |
hexamethylphosphoric triamide | [(CH3)2N]3PO | 232.5 °C | 29.6 | 1.03 g/cm3 | 5.38 | high boiling point, high toxicity |
pyridine | C5H5N | 115 °C | 13.3 | 0.982 g/cm3 | 2.22 | reacts with protic and Lewis acids |
sulfolane | C4H8SO2 | 286 °C | ? | 1.27 g/cm3 | 4.8 | high boiling point |
tetrahydrofuran | C4H8O | 66 °C | 7.6 | 0.887 g/cm3 | 1.75 | polymerizes in presence of strong protic and Lewis acids |
References
- ^ Stoye, Dieter (2000). "Solvents". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a24_437. ISBN 3527306730.
- ^ John R. Rumble (ed.). "Laboratory Solvent Solvents and Other Liquid Reagents". CRC Handbook of Chemistry and Physics, 102nd Edition (Internet Version 2021). Boca Raton, FL, USA: CRC Press/Taylor & Francis.
- ^ W. L. F. Armarego (2017). Purification of Laboratory Chemicals, 8th Edition. Elsevier. ISBN 9780128054567.