User:Jushe1234/sandbox: Difference between revisions
Notes for citations pertaining to the Quaternary geology article https://en.wikipedia.org/wiki/Quaternary_geology |
First draft of my article contribution for ERTH 4303 Tags: Possible self promotion in userspace Visual edit |
||
Line 1: | Line 1: | ||
{{dashboard.wikiedu.org sandbox}} |
{{dashboard.wikiedu.org sandbox}} |
||
== Economic Mineral Occurrences in [[Layered intrusion]] == |
|||
Layered intrusions are potentially economically significant for the occurrence of nickel-copper-platinum group element (Ni-Cu-PGE), and iron-titanium oxide (Fe-Ti oxide) ore deposits. <ref name=":0">{{Cite journal |last=Howarth |first=Geoffrey H. |last2=Prevec |first2=Stephen A. |date=2013-11-01 |title=Trace element, PGE, and Sr–Nd isotope geochemistry of the Panzhihua mafic layered intrusion, SW China: Constraints on ore-forming processes and evolution of parent magma at depth in a plumbing-system |url=https://www.sciencedirect.com/science/article/pii/S0016703713003530 |journal=Geochimica et Cosmochimica Acta |language=en |volume=120 |pages=459–478 |doi=10.1016/j.gca.2013.06.019 |issn=0016-7037}}</ref> |
|||
Economic Ni-Cu-PGE minerals occur in mafic-ultramific rock within igneous rock-hosted magmatic sulfides emplaced near or at the bottom of the intrusions, in regard to the original orientation of the intrusive complex.<ref name=":1">{{Cite journal |last=Smith |first=Joshua M. |last2=Ripley |first2=Edward M. |last3=Li |first3=Chusi |last4=Shirey |first4=Steven B. |last5=Benson |first5=Erin K. |date=2022-10-01 |title=Magmatic origin for the massive sulfide ores in the sedimentary country rocks of mafic–ultramafic intrusions in the Midcontinent Rift System |url=https://doi.org/10.1007/s00126-022-01095-2 |journal=Mineralium Deposita |language=en |volume=57 |issue=7 |pages=1189–1210 |doi=10.1007/s00126-022-01095-2 |issn=1432-1866}}</ref><ref name=":2">{{Citation |last=Mungall |first=James E |title=Eagle’s Nest<subtitle>A Magmatic Ni-Sulfide Deposit in the James Bay Lowlands, Ontario, Canada</subtitle> |date=2010 |url=http://dx.doi.org/10.5382/sp.15.2.10 |work=The Challenge of Finding New Mineral Resources<subtitle>Global Metallogeny, Innovative Exploration, and New Discoveries</subtitle> |publisher=Society of Economic Geologists |access-date=2023-02-18 |last2=Harvey |first2=John D |last3=Balch |first3=Steven J |last4=Azar |first4=Bronwyn |last5=Atkinson |first5=James |last6=Hamilton |first6=Michael A}}</ref> The standard base metal magmatic sulfide assemblage is composed of pyrrhotite, pentlandite, and chalcopyrite, with lesser to trace amounts of pyrite, cubanite and magnetite. The respective minerals that make up the copper and nickel ores are chalcopyrite and pentlandite.<ref name=":1" /><ref name=":2" /><ref name=":3">{{Cite journal |last=Zuccarelli |first=Natascia |last2=Lesher |first2=C. Michael |last3=Houlé |first3=Michel G. |last4=Weston |first4=Ryan J. |date=2018 |title=SULFIDE TEXTURAL VARIATIONS AND MULTIPHASE ORE EMPLACEMENT IN THE EAGLE'S NEST NI-CU-(PGE) DEPOSIT, MCFAULDS LAKE GREENSTONE BELT, SUPERIOR PROVINCE, NORTHERN ONTARIO, CANADA |url=http://dx.doi.org/10.1130/abs/2018am-317024 |journal=Geological Society of America Abstracts with Programs |publisher=Geological Society of America |doi=10.1130/abs/2018am-317024}}</ref> The platinum group elements are associated with the typical base metal magmatic sulfide assemblage,<ref name=":3" /><ref>{{Cite journal |last=Laskar |first=C. |last2=Bazarkina |first2=E.F. |last3=Kokh |first3=M.A. |last4=Hazemann |first4=J.-L. |last5=Vuilleumier |first5=R. |last6=Desmaele |first6=E. |last7=Pokrovski |first7=G.S. |date=2022-11 |title=Stability and structure of platinum sulfide complexes in hydrothermal fluids |url=http://dx.doi.org/10.1016/j.gca.2022.08.015 |journal=Geochimica et Cosmochimica Acta |volume=336 |pages=407–422 |doi=10.1016/j.gca.2022.08.015 |issn=0016-7037}}</ref> occurring as platinum group minerals (PGM) as sulfides, arsenides, alloys, and native metals.<ref name=":2" /><ref name=":3" /> |
|||
In Chromium rich layered intrusive complexes, the chromium bearing mineral chromitite can form discrete monomineralic cumulate layers.<ref>{{Cite journal |last=Korges |first=Maximilian |last2=Junge |first2=Malte |last3=Borg |first3=Gregor |last4=Oberthür |first4=Thomas |date=2021-11-01 |title=Supergene mobilization and redistribution of platinum-group elements in the Merensky Reef, eastern Bushveld Complex, South Africa |url=https://pubs.geoscienceworld.org/canmin/article/59/6/1381/610140/Supergene-mobilization-and-redistribution-of |journal=The Canadian Mineralogist |language=en |volume=59 |issue=6 |pages=1381–1396 |doi=10.3749/canmin.2100023 |issn=1499-1276}}</ref> In local portions of the intrusive suite or in systems lacking chromium, it may occur as chromitite clasts associated with base metal magmatic sulfides.<ref name=":3" /> Similar to chromium occurrences, iron and titanium rich systems may form discrete cumulate layers composed primarily of magnetite and ilmenite<ref name=":0" /><ref>{{Cite journal |last=Song |first=Xie-Yan |last2=Qi |first2=Hua-Wen |last3=Hu |first3=Rui-Zhong |last4=Chen |first4=Lie-Meng |last5=Yu |first5=Song-Yue |last6=Zhang |first6=Jia-Fei |date=2013-03 |title=Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China: MAGNETITE DEPOSITS IN LAYERED INTRUSION |url=http://doi.wiley.com/10.1002/ggge.20068 |journal=Geochemistry, Geophysics, Geosystems |language=en |volume=14 |issue=3 |pages=712–732 |doi=10.1002/ggge.20068}}</ref>. |
|||
There are significant Ni-Cu-PGE ores within the country rock spatially associated with the layered complex,<ref name=":1" /><ref>{{Cite journal |last=Hall |first=M.F. |last2=Lafrance |first2=B. |last3=Gibson |first3=H.L. |date=2020-10 |title=Emplacement of sharp-walled sulfide veins during the formation and reactivation of impact-related structures at the Broken Hammer Mine, Sudbury, Ontario |url=http://dx.doi.org/10.1139/cjes-2019-0229 |journal=Canadian Journal of Earth Sciences |volume=57 |issue=10 |pages=1149–1166 |doi=10.1139/cjes-2019-0229 |issn=0008-4077}}</ref> the nickel, copper, and PGM's occur within sulfide veins in the foot-wall of the layered complex.<ref name=":1" /><ref>{{Cite journal |last=Sullivan |first=Neal A. |last2=Zajacz |first2=Zoltán |last3=Brenan |first3=James M. |last4=Tsay |first4=Alexandra |date=2022-01 |title=The solubility of platinum in magmatic brines: Insights into the mobility of PGE in ore-forming environments |url=http://dx.doi.org/10.1016/j.gca.2021.09.014 |journal=Geochimica et Cosmochimica Acta |volume=316 |pages=253–272 |doi=10.1016/j.gca.2021.09.014 |issn=0016-7037}}</ref><ref>{{Cite journal |last=Pentek |first=A. |last2=Molnar |first2=F. |last3=Watkinson |first3=D. H. |last4=Jones |first4=P. C. |date=2008-08-01 |title=Footwall-type Cu-Ni-PGE Mineralization in the Broken Hammer Area, Wisner Township, North Range, Sudbury Structure |url=http://dx.doi.org/10.2113/gsecongeo.103.5.1005 |journal=Economic Geology |volume=103 |issue=5 |pages=1005–1028 |doi=10.2113/gsecongeo.103.5.1005 |issn=0361-0128}}</ref> Whether or not there is a direct relationship between igneous and country rock-hosted magmatic sulfides is still a debated topic.<ref name=":1" /> |
|||
== Citations for Quaternary geology == |
== Citations for Quaternary geology == |
Revision as of 01:51, 19 February 2023
This is a user sandbox of Jushe1234. You can use it for testing or practicing edits. This is not the sandbox where you should draft your assigned article for a dashboard.wikiedu.org course. To find the right sandbox for your assignment, visit your Dashboard course page and follow the Sandbox Draft link for your assigned article in the My Articles section. |
Economic Mineral Occurrences in Layered intrusion
Layered intrusions are potentially economically significant for the occurrence of nickel-copper-platinum group element (Ni-Cu-PGE), and iron-titanium oxide (Fe-Ti oxide) ore deposits. [1]
Economic Ni-Cu-PGE minerals occur in mafic-ultramific rock within igneous rock-hosted magmatic sulfides emplaced near or at the bottom of the intrusions, in regard to the original orientation of the intrusive complex.[2][3] The standard base metal magmatic sulfide assemblage is composed of pyrrhotite, pentlandite, and chalcopyrite, with lesser to trace amounts of pyrite, cubanite and magnetite. The respective minerals that make up the copper and nickel ores are chalcopyrite and pentlandite.[2][3][4] The platinum group elements are associated with the typical base metal magmatic sulfide assemblage,[4][5] occurring as platinum group minerals (PGM) as sulfides, arsenides, alloys, and native metals.[3][4]
In Chromium rich layered intrusive complexes, the chromium bearing mineral chromitite can form discrete monomineralic cumulate layers.[6] In local portions of the intrusive suite or in systems lacking chromium, it may occur as chromitite clasts associated with base metal magmatic sulfides.[4] Similar to chromium occurrences, iron and titanium rich systems may form discrete cumulate layers composed primarily of magnetite and ilmenite[1][7].
There are significant Ni-Cu-PGE ores within the country rock spatially associated with the layered complex,[2][8] the nickel, copper, and PGM's occur within sulfide veins in the foot-wall of the layered complex.[2][9][10] Whether or not there is a direct relationship between igneous and country rock-hosted magmatic sulfides is still a debated topic.[2]
Citations for Quaternary geology
- Ehlers, J., Gibbard, P. L., Hughes, P. D., & Gibbard, P. L. (Philip L. (2011). Quaternary glaciations extent and chronology : a closer look. Elsevier. (Intro section)
- [11] for the dating methods of lichenometry and dendrochronology
- [12] for the dating method of amino acid geochronology
- [13]for the dating methods of dendrochronology
- [14]for the dating methods of lichenometry
Added citations for the chemical and biological Quaternary geochronological dating methods.
- ^ a b Howarth, Geoffrey H.; Prevec, Stephen A. (2013-11-01). "Trace element, PGE, and Sr–Nd isotope geochemistry of the Panzhihua mafic layered intrusion, SW China: Constraints on ore-forming processes and evolution of parent magma at depth in a plumbing-system". Geochimica et Cosmochimica Acta. 120: 459–478. doi:10.1016/j.gca.2013.06.019. ISSN 0016-7037.
- ^ a b c d e Smith, Joshua M.; Ripley, Edward M.; Li, Chusi; Shirey, Steven B.; Benson, Erin K. (2022-10-01). "Magmatic origin for the massive sulfide ores in the sedimentary country rocks of mafic–ultramafic intrusions in the Midcontinent Rift System". Mineralium Deposita. 57 (7): 1189–1210. doi:10.1007/s00126-022-01095-2. ISSN 1432-1866.
- ^ a b c Mungall, James E; Harvey, John D; Balch, Steven J; Azar, Bronwyn; Atkinson, James; Hamilton, Michael A (2010), "Eagle's Nest<subtitle>A Magmatic Ni-Sulfide Deposit in the James Bay Lowlands, Ontario, Canada</subtitle>", The Challenge of Finding New Mineral Resources<subtitle>Global Metallogeny, Innovative Exploration, and New Discoveries</subtitle>, Society of Economic Geologists, retrieved 2023-02-18
{{citation}}
: CS1 maint: extra punctuation (link) - ^ a b c d Zuccarelli, Natascia; Lesher, C. Michael; Houlé, Michel G.; Weston, Ryan J. (2018). "SULFIDE TEXTURAL VARIATIONS AND MULTIPHASE ORE EMPLACEMENT IN THE EAGLE'S NEST NI-CU-(PGE) DEPOSIT, MCFAULDS LAKE GREENSTONE BELT, SUPERIOR PROVINCE, NORTHERN ONTARIO, CANADA". Geological Society of America Abstracts with Programs. Geological Society of America. doi:10.1130/abs/2018am-317024.
- ^ Laskar, C.; Bazarkina, E.F.; Kokh, M.A.; Hazemann, J.-L.; Vuilleumier, R.; Desmaele, E.; Pokrovski, G.S. (2022-11). "Stability and structure of platinum sulfide complexes in hydrothermal fluids". Geochimica et Cosmochimica Acta. 336: 407–422. doi:10.1016/j.gca.2022.08.015. ISSN 0016-7037.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Korges, Maximilian; Junge, Malte; Borg, Gregor; Oberthür, Thomas (2021-11-01). "Supergene mobilization and redistribution of platinum-group elements in the Merensky Reef, eastern Bushveld Complex, South Africa". The Canadian Mineralogist. 59 (6): 1381–1396. doi:10.3749/canmin.2100023. ISSN 1499-1276.
- ^ Song, Xie-Yan; Qi, Hua-Wen; Hu, Rui-Zhong; Chen, Lie-Meng; Yu, Song-Yue; Zhang, Jia-Fei (2013-03). "Formation of thick stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: Evidence from the Panzhihua intrusion, SW China: MAGNETITE DEPOSITS IN LAYERED INTRUSION". Geochemistry, Geophysics, Geosystems. 14 (3): 712–732. doi:10.1002/ggge.20068.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Hall, M.F.; Lafrance, B.; Gibson, H.L. (2020-10). "Emplacement of sharp-walled sulfide veins during the formation and reactivation of impact-related structures at the Broken Hammer Mine, Sudbury, Ontario". Canadian Journal of Earth Sciences. 57 (10): 1149–1166. doi:10.1139/cjes-2019-0229. ISSN 0008-4077.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Sullivan, Neal A.; Zajacz, Zoltán; Brenan, James M.; Tsay, Alexandra (2022-01). "The solubility of platinum in magmatic brines: Insights into the mobility of PGE in ore-forming environments". Geochimica et Cosmochimica Acta. 316: 253–272. doi:10.1016/j.gca.2021.09.014. ISSN 0016-7037.
{{cite journal}}
: Check date values in:|date=
(help) - ^ Pentek, A.; Molnar, F.; Watkinson, D. H.; Jones, P. C. (2008-08-01). "Footwall-type Cu-Ni-PGE Mineralization in the Broken Hammer Area, Wisner Township, North Range, Sudbury Structure". Economic Geology. 103 (5): 1005–1028. doi:10.2113/gsecongeo.103.5.1005. ISSN 0361-0128.
- ^ Alcalá-Reygosa, Jesús; Palacios, David; Schimmelpfennig, Irene; Vázquez-Selem, Lorenzo; García-Sancho, Leopoldo; Franco-Ramos, Osvaldo; Villanueva, José; Zamorano, José Juan; Aumaître, Georges; Bourlès, Didier; Keddadouche, Karim (2018). "Dating late Holocene lava flows in Pico de Orizaba (Mexico) by means of in situ-produced cosmogenic 36Cl, lichenometry and dendrochronology". Quaternary Geochronology. 47: 93–106. doi:10.1016/j.quageo.2018.05.011.
- ^ Penkman, Kirsty; Kaufman, Darrell (2013-04-01). "Amino acid geochronology: Recent perspectives". Quaternary Geochronology. Amino Acid Racemization. 16: 1–2. doi:10.1016/j.quageo.2012.12.007. ISSN 1871-1014.
- ^ Koch, Johannes (2009-04-01). "Improving age estimates for late Holocene glacial landforms using dendrochronology – Some examples from Garibaldi Provincial Park, British Columbia". Quaternary Geochronology. 4 (2): 130–139. doi:10.1016/j.quageo.2008.11.002. ISSN 1871-1014.
- ^ Armstrong, R. A.; Bradwell, T. (2015-06-01). "'Growth rings' in crustose lichens: Comparison with directly measured growth rates and implications for lichenometry". Quaternary Geochronology. 28: 88–95. doi:10.1016/j.quageo.2015.04.003. ISSN 1871-1014.