Electrolyte: Difference between revisions
m BOT - rv 71.243.36.187 (talk) to last version by AntiVandalBot |
|||
Line 35: | Line 35: | ||
Electrolyte and sports drinks can be home-made by using the correct proportions of sugar, salt and water. [http://www.webmd.com/hw/health_guide_atoz/str2254.asp?navbar=hw86827] |
Electrolyte and sports drinks can be home-made by using the correct proportions of sugar, salt and water. [http://www.webmd.com/hw/health_guide_atoz/str2254.asp?navbar=hw86827] |
||
In the movie [[Idiocracy]] A futuristic [[Gatorade]] has replaced water everywhere: "But Brawndo has everything a plant needs, it’s got electrolytes!" |
|||
== Electrochemistry == |
== Electrochemistry == |
Revision as of 09:20, 14 March 2007
An electrolyte is a substance containing free ions that behaves as an electrically conductive medium. Because they generally consist of ions in solution, electrolytes are also known as ionic solutions, but molten electrolytes and solid electrolytes are also possible. They are sometimes referred to in abbreviated jargon as lytes.
Explanation
Electrolytes commonly exist as solutions of acids, bases or salts. Furthermore, some gases may act as electrolytes under conditions of high temperature or low pressure.
Electrolytes are normally formed when a salt is placed into a solvent such as water and the individual atomic components are separated by the force applied upon the solute molecule, in a process called chemical dissociation in which the solvent applies force to hold the ions apart. Salts are compounds that are linked by weak ionic bonds, and will separate into charged ions in the presence of a solvent containing stronger covalent bonds.
Basically, the electrolyte is a material that dissolves in water to give a solution that conducts an electric current.
An electrolyte may be described as concentrated if it has a high concentration of ions, or dilute if it has a low concentration. If a high proportion of the solute dissociates to form free ions, the solution is strong; if most of the solute does not dissociate, the solution is weak. The properties of electrolytes may be exploited using electrolysis to extract constituent elements and compounds contained within the solution.
Physiological importance
In physiology, the primary ions of electrolytes are sodium(Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl-), phosphate (PO43-), and hydrogen carbonate (HCO3-). The electric charge symbols of plus (+) and minus (-) are used to indicate that the substance indicated is ionic in nature and has an imbalanced distribution of electrons. This is the result of chemical dissociation.
All higher lifeforms require a subtle and complex electrolyte balance between the intracellular and extracellular milieu. In particular, the maintenance of precise osmotic gradients of electrolytes is important. Such gradients affect and regulate the hydration of the body, blood pH, and are critical for nerve and muscle function.
Both muscle tissue and neurons are considered electric tissues of the body. Muscles and neurons are activated by electrolyte activity between the extracellular fluid or interstitial fluid, and intracellular fluid. Electrolytes may enter or leave the cell membrane through specialized protein structures embedded in the plasma membrane called ion channels. For example, muscle contraction is dependent upon the presence of calcium (Ca2+), sodium (Na+), and potassium (K+). Without sufficient levels of these key electrolytes, muscle weakness or severe muscle contractions may occur.
Electrolyte balance is maintained by oral, or in emergencies, intravenous (IV) intake of electrolyte-containing substances, and is regulated by hormones, generally with the kidneys flushing out excess levels. In humans, electrolyte homeostasis is regulated by hormones such as antidiuretic hormone, aldosterone and parathyroid hormone. Serious electrolyte disturbances, such as dehydration and overhydration, may lead to cardiac and neurological complications and, unless they are rapidly resolved, will result in a medical emergency.
Measurement
Measurement of electrolytes is a commonly performed diagnostic procedure, performed via blood testing or urinalysis. The interpretation of these values is somewhat meaningless without analysis of the clinical history and is often impossible without parallel measurement of renal function. Electrolytes measured most often are sodium and potassium. Chloride levels are rarely measured except for arterial blood gas interpretation since they are inherently linked to sodium levels. One important test conducted on urine is the specific gravity test to determine the occurrence of electrolyte imbalance.
Sports drinks
Electrolytes are commonly found in sports drinks. In oral rehydration therapy, electrolyte drinks containing sodium and potassium salts are used to replenish the body's water and electrolyte levels after dehydration caused by exercise, diaphoresis, diarrhea, vomiting or starvation. Giving pure water to such a person is not the best way to restore fluid levels because it dilutes the salts inside the body's cells and interferes with their chemical functions. This can lead to water intoxication.
Sports drinks such as Gatorade, Powerade, or Lucozade are electrolyte drinks with large amounts of added carbohydrates, such as glucose, to provide energy. The drinks commonly sold to the public are isotonic (with osmolality close to that of blood), with hypotonic (with a lower osmolality) and hypertonic (with a higher osmolality) varieties available to athletes, depending on their nutritional needs.[1]
It is really not necessary to replace losses of sodium, potassium and other electrolytes during exercise since it is unlikely that a significant depletion the body's stores of these minerals will occur during normal training. However, in extreme exercising conditions over 5 or 6 hours (an Ironman or ultramarathon, for example) the consumtion of a complex sports drink with electrolytes is recommended. Athletes who do not consume electrolytes under these conditions risk overhydration (or hyponatremia). [2]
Because sports drinks typically contain very high levels of sugar, they are not recommended for regular use by children. Rather, specially-formulated pediatric electrolyte solutions are recommended. Sports drinks are also not appropriate for replacing the fluid lost during diarrhea. The role of sports drinks is to inhibit electrolyte loss but are insufficient to restore imbalance once it occurs.[citation needed] Medicinal rehydration sachets and drinks are available to replace the key electrolyte ions lost. Dentists recommend that regular consumers of sports drinks observe precautions against tooth decay.
Electrolyte and sports drinks can be home-made by using the correct proportions of sugar, salt and water. [3]
In the movie Idiocracy A futuristic Gatorade has replaced water everywhere: "But Brawndo has everything a plant needs, it’s got electrolytes!"
Electrochemistry
When two electrodes are placed in an electrolyte and a voltage is applied, the electrolyte will conduct electricity. Lone electrons normally cannot pass through the electrolyte; instead, a chemical reaction occurs at the cathode consuming electrons from the cathode, and another reaction occurs at the anode producing electrons to be taken up by the anode. As a result, a negative charge cloud develops in the electrolyte around the cathode, and a positive charge develops around the anode. The ions in the electrolyte move to neutralize these charges so that the reactions can continue and the electrons can keep flowing.
For example, in a dilute solution of ordinary salt (sodium chloride, NaCl) in water, the cathode reaction will be
- 2H2O + 2e− → 2OH− + H2
and hydrogen gas will bubble up; the anode reaction is
- 2H2O → O2 + 4H+ + 4e−
and oxygen gas will be liberated. The positively charged sodium ions Na+ will move towards the cathode neutralizing the negative charge of OH− there, and the negatively charged chlorine ions Cl− will move towards the anode neutralizing the positive charge of H+ there. Without the ions from the electrolyte, the charges around the electrode would slow down continued electron flow; diffusion of H+ and OH− through water to the other electrode takes longer than movement of the much more prevalent salt ions.
In other systems, the electrode reactions can involve the metals of the electrodes as well as the ions of the electrolyte.
Electrolytic conductors are used in electronic devices where the chemical reaction at a metal/electrolyte interface yields useful effects.
- In batteries, two metals with different electron affinities are used as electrodes; electrons flow from one electrode to the other outside of the battery, while inside the battery the circuit is closed by the electrolyte's ions. Here the electrode reactions slowly use up the chemical energy stored in the electrolyte.
- In some fuel cells, a solid electrolyte or proton conductor connects the plates electrically while keeping the hydrogen and oxygen fuel gases separated.
- In electroplating tanks, the electrolyte simultaneously deposits metal onto the object to be plated, and electrically connects that object in the circuit.
- In operation-hours gauges, two thin columns of mercury are separated by a small electrolyte-filled gap, and, as charge is passed through the device, the metal dissolves on one side and plates out on the other, causing the visible gap to slowly move along.
- In electrolytic capacitors the chemical effect is used to produce an extremely thin 'dielectric' or insulating coating, while the electrolyte layer behaves as one capacitor plate.
- In some hygrometers the humidity of air is sensed by measuring the conductivity of a nearly dry electrolyte.
- Hot, softened glass is an electrolytic conductor, and some glass manufacturers keep the glass molten by passing a large electric current through it.
See also
External links
- Fluids and Hydration in Sport - includes a discussion of the role of hypotonic, isotonic and hypertonic drinks.