Archaeoglobaceae: Difference between revisions
No edit summary |
No edit summary |
||
Line 91: | Line 91: | ||
==References== |
==References== |
||
{{Reflist|1}} |
{{Reflist|1}} |
||
<ref>{{cite book |last1=Rosenberg et al. |date=2014 |isbn=978-3-642-38954-2}}</ref>https://doi.org/10.1007/978-3-642-38954-2 |
|||
==Further reading== |
==Further reading== |
||
===Scientific books=== |
===Scientific books=== |
Revision as of 22:41, 25 April 2023
Archaeoglobaceae | |
---|---|
The PIWI domain of an argonaute protein from A. fulgidus, bound to a short double-stranded RNA fragment and illustrating the base-pairing and aromatic stacking stabilization of the bound conformation. | |
Scientific classification | |
Domain: | Archaea |
Kingdom: | Euryarchaeota |
Class: | Archaeoglobi |
Order: | Archaeoglobales |
Family: | Archaeoglobaceae Huber and Stetter 2002 |
Genera | |
| |
Synonyms | |
|
Archaeoglobaceae are a family of the Archaeoglobales.[1] All known genera within the Archaeoglobaceae are hyperthermophilic and can be found near undersea hydrothermal vents. Archaeoglobaceae are the only family in the order Archaeoglobales, which is the only order in the class Archaeoglobi.
Mode of metabolism
While all genera within the Archaeoglobaceae are related to each other phylogenetically, the mode of metabolism used by each of these organisms is unique. Archaeoglobus are chemoorganotrophic sulfate-reducing archaea, the only known member of the Archaea that possesses this type of metabolism. Ferroglobus, in contrast, are chemolithotrophic organisms that couple the oxidation of ferrous iron to the reduction of nitrate. Geoglobus are iron reducing-archaea that use hydrogen gas or organic compounds as energy sources.[2]
Phylogeny
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[3] and National Center for Biotechnology Information (NCBI).[1]
16S rRNA-based LTP_01_2022[4][5][6] | 53 marker proteins based GTDB 07-RS207[7][8][9] | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
See also
References
- ^ a b Sayers; et al. "Archaeoglobaceae". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2021-06-05.
- ^ * Madigan, M.T. & Martinko, J.M. (2005). Brock Biology of Microorganisms (11th ed.). Pearson Prentice Hall.
- ^ J.P. Euzéby. "Archaeoglobaceae". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2021-11-17.
- ^ "The LTP". Retrieved 23 February 2022.
- ^ "LTP_all tree in newick format". Retrieved 23 February 2022.
- ^ "LTP_01_2022 Release Notes" (PDF). Retrieved 23 February 2022.
- ^ "GTDB release 07-RS207". Genome Taxonomy Database. Retrieved 20 June 2022.
- ^ "ar53_r207.sp_labels". Genome Taxonomy Database. Retrieved 20 June 2022.
- ^ "Taxon History". Genome Taxonomy Database. Retrieved 20 June 2022.
[1]https://doi.org/10.1007/978-3-642-38954-2
Further reading
Scientific books
- Huber H; Stetter KO (2001). "Family I. Archaeoglobaceae fam. nov. Stetter 1989, 2216". In DR Boone; RW Castenholz (eds.). Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the deeply branching and phototrophic Bacteria (2nd ed.). New York: Springer Verlag. p. 169. ISBN 978-0-387-98771-2.
- Huber H; Stetter KO (2001). "Order I. Archaeoglobales ord. nov.". In DR Boone; RW Castenholz (eds.). Bergey's Manual of Systematic Bacteriology Volume 1: The Archaea and the deeply branching and phototrophic Bacteria (2nd ed.). New York: Springer Verlag. p. 169. ISBN 978-0-387-98771-2.
- Stetter, KO (1989). "Group II. Archaeobacterial sulfate reducers. Order Archaeoglobales". In JT Staley; MP Bryant; N Pfennig; JG Holt (eds.). Bergey's Manual of Systematic Bacteriology. Vol. 3 (1st ed.). Baltimore: The Williams & Wilkins Co. p. 169.
- Saini, R., Kapoor, R., Kumar, R. N., Siddiqi, T. A., & Kumar, A. (2011). CO2 utilizing microbes — A comprehensive review. Biotechnology Advances, 29(6), 949–960.https://doi.org/10.1016/j.biotechadv.2011.08.009