Entanglement monotone: Difference between revisions
Appearance
Content deleted Content added
Citation bot (talk | contribs) Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 2424/3850 |
m →Definition: Hyperlinks |
||
Line 5: | Line 5: | ||
== Definition == |
== Definition == |
||
Let <math>\mathcal{S}(\mathcal{H}_A\otimes\mathcal{H}_B)</math>be the space of all states, i.e., Hermitian positive semi-definite operators with trace one, over the bipartite Hilbert space <math>\mathcal{H}_A\otimes\mathcal{H}_B</math>. An entanglement measure is a function <math>\mu:{\displaystyle {\mathcal {S}}({\mathcal {H}}_{A}\otimes {\mathcal {H}}_{B})}\to \mathbb{R}_{\geq 0}</math>such that: |
Let <math>\mathcal{S}(\mathcal{H}_A\otimes\mathcal{H}_B)</math>be the space of all [[Quantum state|states]], i.e., [[Hermitian matrix|Hermitian]] [[Positive semi-definite matrix|positive semi-definite]] operators with trace one, over the bipartite [[Hilbert space]] <math>\mathcal{H}_A\otimes\mathcal{H}_B</math>. An entanglement measure is a function <math>\mu:{\displaystyle {\mathcal {S}}({\mathcal {H}}_{A}\otimes {\mathcal {H}}_{B})}\to \mathbb{R}_{\geq 0}</math>such that: |
||
# <math>\mu(\rho)=0</math> if <math>\rho</math> is separable; |
# <math>\mu(\rho)=0</math> if <math>\rho</math> is [[Separable state|separable]]; |
||
# Monotonically decreasing under LOCC, viz., for the [[Kraus operator]] <math>E_i\otimes F_i</math> corresponding to the LOCC <math>\mathcal{E}_{LOCC}</math>, let <math>p_i=\mathrm{Tr}[(E_i\otimes F_i)\rho (E_i\otimes F_i)^{\dagger}]</math> and <math>\rho_i=(E_i\otimes F_i)\rho (E_i\otimes F_i)^{\dagger}/\mathrm{Tr}[(E_i\otimes F_i)\rho (E_i\otimes F_i)^{\dagger}]</math>for a given state <math>\rho</math>, then (i) <math>\mu</math> does not increase under the average over all outcomes, <math>\mu(\rho)\geq \sum_i p_i\mu(\rho_i)</math> and (ii) <math>\mu</math> does not increase if the outcomes are all discarded, <math>\mu(\rho)\geq \sum_i \mu(p_i\rho_i)</math>. |
# Monotonically decreasing under [[LOCC]], viz., for the [[Kraus operator]] <math>E_i\otimes F_i</math> corresponding to the LOCC <math>\mathcal{E}_{LOCC}</math>, let <math>p_i=\mathrm{Tr}[(E_i\otimes F_i)\rho (E_i\otimes F_i)^{\dagger}]</math> and <math>\rho_i=(E_i\otimes F_i)\rho (E_i\otimes F_i)^{\dagger}/\mathrm{Tr}[(E_i\otimes F_i)\rho (E_i\otimes F_i)^{\dagger}]</math>for a given state <math>\rho</math>, then (i) <math>\mu</math> does not increase under the average over all outcomes, <math>\mu(\rho)\geq \sum_i p_i\mu(\rho_i)</math> and (ii) <math>\mu</math> does not increase if the outcomes are all discarded, <math>\mu(\rho)\geq \sum_i \mu(p_i\rho_i)</math>. |
||
Some authors also add the condition that <math>\mu(\varrho)=1</math> over the maximally entangled state <math>\varrho</math>. If the nonnegative function only satisfies condition 2 of the above, then it is called an entanglement monotone. |
Some authors also add the condition that <math>\mu(\varrho)=1</math> over the maximally entangled state <math>\varrho</math>. If the nonnegative function only satisfies condition 2 of the above, then it is called an entanglement monotone. |
Revision as of 18:33, 26 April 2023
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In quantum information and quantum computation, an entanglement monotone is a function that quantifies the amount of entanglement present in a quantum state. Any entanglement monotone is a nonnegative function whose value does not increase under local operations and classical communication.[1][2]
Definition
Let be the space of all states, i.e., Hermitian positive semi-definite operators with trace one, over the bipartite Hilbert space . An entanglement measure is a function such that:
- if is separable;
- Monotonically decreasing under LOCC, viz., for the Kraus operator corresponding to the LOCC , let and for a given state , then (i) does not increase under the average over all outcomes, and (ii) does not increase if the outcomes are all discarded, .
Some authors also add the condition that over the maximally entangled state . If the nonnegative function only satisfies condition 2 of the above, then it is called an entanglement monotone.
References
- ^ Horodecki, Ryszard; Horodecki, Paweł; Horodecki, Michał; Horodecki, Karol (2009-06-17). "Quantum entanglement". Reviews of Modern Physics. 81 (2): 865–942. arXiv:quant-ph/0702225. Bibcode:2009RvMP...81..865H. doi:10.1103/RevModPhys.81.865. S2CID 59577352.
- ^ Chitambar, Eric; Gour, Gilad (2019-04-04). "Quantum resource theories". Reviews of Modern Physics. 91 (2): 025001. arXiv:1806.06107. Bibcode:2019RvMP...91b5001C. doi:10.1103/RevModPhys.91.025001. S2CID 119194947.