Jump to content

Kramers–Moyal expansion: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Pawula theorem: clearer language
charfun
Line 1: Line 1:
In [[stochastic processes]], '''Kramers–Moyal expansion''' refers to a [[Taylor series]] expansion of the [[master equation]], named after [[Hans Kramers]] and [[José Enrique Moyal]].<ref>{{cite journal |last=Kramers |first=H. A. |year=1940 |title=Brownian motion in a field of force and the diffusion model of chemical reactions |journal=Physica |volume=7 |issue=4 |pages=284–304 |doi=10.1016/S0031-8914(40)90098-2 |bibcode=1940Phy.....7..284K |s2cid=33337019 }}</ref><ref>{{cite journal |last=Moyal |first=J. E. |year=1949 |title=Stochastic processes and statistical physics |journal=[[Journal of the Royal Statistical Society]] |series=Series B (Methodological) |volume=11 |issue=2 |pages=150–210 |jstor=2984076 }}</ref> This expansion transforms the [[integro-differential equation|integro-differential]] [[master equation]]
In [[stochastic processes]], '''Kramers–Moyal expansion''' refers to a [[Taylor series]] expansion of the [[master equation]], named after [[Hans Kramers]] and [[José Enrique Moyal]].<ref>{{cite journal |last=Kramers |first=H. A. |year=1940 |title=Brownian motion in a field of force and the diffusion model of chemical reactions |journal=Physica |volume=7 |issue=4 |pages=284–304 |doi=10.1016/S0031-8914(40)90098-2 |bibcode=1940Phy.....7..284K |s2cid=33337019 }}</ref><ref>{{cite journal |last=Moyal |first=J. E. |year=1949 |title=Stochastic processes and statistical physics |journal=[[Journal of the Royal Statistical Society]] |series=Series B (Methodological) |volume=11 |issue=2 |pages=150–210 |jstor=2984076 }}</ref>


Start with the [[integro-differential equation|integro-differential]] [[master equation]]
:<math>\frac{\partial p(x,t)}{\partial t} =\int dx'[W(x|x')p(x',t)-W(x'|x)p(x,t)]</math>


:<math>\frac{\partial p(x,t)}{\partial t} =\int p(x,t|x_0, t_0)p(x_0, t_0) dx_0</math>
where <math>p(x,t|x_0,t_0)</math> (for brevity, this probability is denoted by <math>p(x,t)</math>) is the transition probability density, to an infinite order [[partial differential equation]]<ref>{{cite book |last=Gardiner |first=C. |year=2009 |title=Stochastic Methods |edition=4th |location=Berlin |publisher=Springer |isbn=978-3-642-08962-6 }}</ref><ref>{{cite book |last=Van Kampen |first=N. G. |year=1992 |title=Stochastic Processes in Physics and Chemistry |publisher=Elsevier |isbn=0-444-89349-0 }}</ref><ref>{{cite book |last=Risken |first=H. |year=1996 |title=The Fokker–Planck Equation |pages=63–95 |publisher=Springer |location=Berlin, Heidelberg |isbn=3-540-61530-X }}</ref>


where <math>p(x', t'\mid x, t)</math> is the [[Transition rate matrix|transition probability]], and <math>p(x,t)</math> is the probability density at time <math>t</math>
:<math>\frac{\partial p(x,t)}{\partial t} = \sum_{n=1}^\infty \frac{(-1)^n}{n!} \frac{\partial^n}{\partial x^n}[\alpha_n(x) p(x,t)]</math>


The Kramers–Moyal expansion transforms the above to an infinite order [[partial differential equation]]<ref>{{cite book |last=Gardiner |first=C. |year=2009 |title=Stochastic Methods |edition=4th |location=Berlin |publisher=Springer |isbn=978-3-642-08962-6 }}</ref><ref>{{cite book |last=Van Kampen |first=N. G. |year=1992 |title=Stochastic Processes in Physics and Chemistry |publisher=Elsevier |isbn=0-444-89349-0 }}</ref><ref>{{cite book |last=Risken |first=H. |year=1996 |title=The Fokker–Planck Equation |pages=63–95 |publisher=Springer |location=Berlin, Heidelberg |isbn=3-540-61530-X }}</ref>
where


:<math>\alpha_n(x) = \int_{-\infty}^\infty (x'-x)^n W(x'\mid x) \ dx'.</math>
:<math>\partial_t p(x,t|x', t') = \sum_{n=1}^\infty \frac{(-1)^n}{n!} \frac{\partial^n}{\partial x^n}[\mu_n(t' | x, t) p(x,t)]</math>


where <math>\mu_n</math> is the [[central moment]] function defined by
Here <math>W(x'\mid x)</math> is the [[Transition rate matrix|transition probability rate]]. The [[Fokker–Planck equation]] is obtained by keeping only the first two terms of the series in which <math>\alpha_1</math> is the [[drift velocity|drift]] and <math>\alpha_2</math> is the diffusion coefficient.<ref>{{cite book |first=Wolfgang |last=Paul |first2=Jörg |last2=Baschnagel |chapter=A Brief Survey of the Mathematics of Probability Theory |title=Stochastic Processes |pages=17–61 [esp. 33–35] |publisher=Springer |year=2013 |isbn= |doi=10.1007/978-3-319-00327-6_2 }}</ref>

:<math>\mu_n(t' | x, t) = \int_{-\infty}^\infty (x'-x)^n p(x', t'\mid x, t) \ dx'.</math>

The [[Fokker–Planck equation]] is obtained by keeping only the first two terms of the series in which <math>\alpha_1</math> is the [[drift velocity|drift]] and <math>\alpha_2</math> is the diffusion coefficient.<ref>{{cite book |first=Wolfgang |last=Paul |first2=Jörg |last2=Baschnagel |chapter=A Brief Survey of the Mathematics of Probability Theory |title=Stochastic Processes |pages=17–61 [esp. 33–35] |publisher=Springer |year=2013 |isbn= |doi=10.1007/978-3-319-00327-6_2 }}</ref>

== Proof ==
In usual probability, where the probability density does not change, the moments of a probability density function determines the probability density itself by a Fourier transform (details may be found at the [[Characteristic function (probability theory)|characteristic function]] page):<math display="block">p(x) = \frac{1}{2\pi} \int e^{-ikx}\tilde p(k)dk
= \sum_{n=0}^\infty \frac{(-1)^n}{n!}\delta^{(n)}(x)\mu_n
</math><math display="block">
\tilde p(k) = \int e^{ikx} p(x) dx = \frac{(ik)^n}{n!} \mu_n </math>


==Pawula theorem==
==Pawula theorem==

Revision as of 05:17, 9 June 2023

In stochastic processes, Kramers–Moyal expansion refers to a Taylor series expansion of the master equation, named after Hans Kramers and José Enrique Moyal.[1][2]

Start with the integro-differential master equation

where is the transition probability, and is the probability density at time

The Kramers–Moyal expansion transforms the above to an infinite order partial differential equation[3][4][5]

where is the central moment function defined by

The Fokker–Planck equation is obtained by keeping only the first two terms of the series in which is the drift and is the diffusion coefficient.[6]

Proof

In usual probability, where the probability density does not change, the moments of a probability density function determines the probability density itself by a Fourier transform (details may be found at the characteristic function page):

Pawula theorem

Let the operator be defined such . The probability density evolves by . Different order of gives different level of approximation.

  • : the probability density does not evolve
  • : it evolves by deterministic drift only.
  • : it evolves by drift and Brownian motion (Fokker-Planck equation)
  • : the fully exact equation.

Pawula theorem states that for any other choice of , there exists a probability density function that can become negative during its evolution (and thus fail to be a probability density function).[7][8][9]

However, this doesn't mean that Kramers-Moyal expansions truncated at other choices of is useless. Though the solution must have negative values at least for sufficiently small times, the resulting approximation probability density may still be better than the approximation.

Implementations

References

  1. ^ Kramers, H. A. (1940). "Brownian motion in a field of force and the diffusion model of chemical reactions". Physica. 7 (4): 284–304. Bibcode:1940Phy.....7..284K. doi:10.1016/S0031-8914(40)90098-2. S2CID 33337019.
  2. ^ Moyal, J. E. (1949). "Stochastic processes and statistical physics". Journal of the Royal Statistical Society. Series B (Methodological). 11 (2): 150–210. JSTOR 2984076.
  3. ^ Gardiner, C. (2009). Stochastic Methods (4th ed.). Berlin: Springer. ISBN 978-3-642-08962-6.
  4. ^ Van Kampen, N. G. (1992). Stochastic Processes in Physics and Chemistry. Elsevier. ISBN 0-444-89349-0.
  5. ^ Risken, H. (1996). The Fokker–Planck Equation. Berlin, Heidelberg: Springer. pp. 63–95. ISBN 3-540-61530-X.
  6. ^ Paul, Wolfgang; Baschnagel, Jörg (2013). "A Brief Survey of the Mathematics of Probability Theory". Stochastic Processes. Springer. pp. 17–61 [esp. 33–35]. doi:10.1007/978-3-319-00327-6_2.
  7. ^ Pawula, R. F. (1967). "Generalizations and extensions of the Fokker–Planck–Kolmogorov equations" (PDF). IEEE Transactions on Information Theory. 13 (1): 33–41. doi:10.1109/TIT.1967.1053955.
  8. ^ Pawula, R. F. (1967). "Approximation of the linear Boltzmann equation by the Fokker–Planck equation". Physical Review. 162 (1): 186–188. Bibcode:1967PhRv..162..186P. doi:10.1103/PhysRev.162.186.
  9. ^ Risken, Hannes (6 December 2012). The Fokker-Planck Equation: Methods of Solution and Applications. ISBN 9783642968075.
  10. ^ Rydin Gorjão, L.; Meirinhos, F. (2019). "kramersmoyal: Kramers--Moyal coefficients for stochastic processes". Journal of Open Source Software. 4 (44): 1693. arXiv:1912.09737. Bibcode:2019JOSS....4.1693G. doi:10.21105/joss.01693.