Jump to content

Statistical distance: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 26: Line 26:
===Generalized metrics===
===Generalized metrics===
Many statistical distances are not [[metric (mathematics)|metric]]s, because they lack one or more properties of proper metrics. For example, [[pseudometric space|pseudometric]]s violate property (2), identity of indiscernibles; [[quasimetric]]s violate property (3), symmetry; and [[semimetric]]s violate property (4), the triangle inequality. Statistical distances that satisfy (1) and (2) are referred to as [[divergence (statistics)|divergence]]s.
Many statistical distances are not [[metric (mathematics)|metric]]s, because they lack one or more properties of proper metrics. For example, [[pseudometric space|pseudometric]]s violate property (2), identity of indiscernibles; [[quasimetric]]s violate property (3), symmetry; and [[semimetric]]s violate property (4), the triangle inequality. Statistical distances that satisfy (1) and (2) are referred to as [[divergence (statistics)|divergence]]s.

==Statistically close==
The [[Total variation distance of probability measures | variation distance]] of two distributions <math>X</math> and <math>Y</math> over a finite domain <math>D</math>, (often referred to as ''statistical difference''<ref>
{{cite book
| last = Goldreich
| first = Oded
| authorlink = Oded Goldreich
| title = Foundations of Cryptography: Basic Tools
| publisher = [[Cambridge University Press]]
| edition = 1st
| location = Berlin
| date = 2001
| page = 106
| isbn = 0-521-79172-3
}}
</ref>
or ''statistical distance''<ref>
Reyzin, Leo. (Lecture Notes) [http://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf Extractors and the Leftover Hash Lemma]
</ref> in cryptography) is defined as

<math> \Delta(X,Y)=\frac{1}{2} \sum _{\alpha \in D} | \Pr[X=\alpha] - \Pr[Y=\alpha] |</math>.

We say that two [[probability ensembles]] <math>\{X_k\}_{k\in\N}</math> and <math>\{Y_k\}_{k\in\N}</math> are statistically close if <math>\Delta(X_k,Y_k)</math> is a [[negligible function]] in <math>k</math>.


==Examples==
==Examples==
Line 44: Line 67:
== See also ==
== See also ==
*[[Probabilistic metric space]]
*[[Probabilistic metric space]]
*[[Randomness extractor]]
*[[Similarity measure]]
*[[Similarity measure]]
*[[Zero-knowledge proof]]


==Notes==
==Notes==

Revision as of 05:20, 11 July 2023

In statistics, probability theory, and information theory, a statistical distance quantifies the distance between two statistical objects, which can be two random variables, or two probability distributions or samples, or the distance can be between an individual sample point and a population or a wider sample of points.

A distance between populations can be interpreted as measuring the distance between two probability distributions and hence they are essentially measures of distances between probability measures. Where statistical distance measures relate to the differences between random variables, these may have statistical dependence,[1] and hence these distances are not directly related to measures of distances between probability measures. Again, a measure of distance between random variables may relate to the extent of dependence between them, rather than to their individual values.

Statistical distance measures are not typically metrics, and they need not be symmetric. Some types of distance measures, which generalize squared distance, are referred to as (statistical) divergences.

Terminology

Many terms are used to refer to various notions of distance; these are often confusingly similar, and may be used inconsistently between authors and over time, either loosely or with precise technical meaning. In addition to "distance", similar terms include deviance, deviation, discrepancy, discrimination, and divergence, as well as others such as contrast function and metric. Terms from information theory include cross entropy, relative entropy, discrimination information, and information gain.

Distances as metrics

Metrics

A metric on a set X is a function (called the distance function or simply distance) d : X × XR+ (where R+ is the set of non-negative real numbers). For all x, y, z in X, this function is required to satisfy the following conditions:

  1. d(x, y) ≥ 0     (non-negativity)
  2. d(x, y) = 0   if and only if   x = y     (identity of indiscernibles. Note that condition 1 and 2 together produce positive definiteness)
  3. d(x, y) = d(y, x)     (symmetry)
  4. d(x, z) ≤ d(x, y) + d(y, z)     (subadditivity / triangle inequality).

Generalized metrics

Many statistical distances are not metrics, because they lack one or more properties of proper metrics. For example, pseudometrics violate property (2), identity of indiscernibles; quasimetrics violate property (3), symmetry; and semimetrics violate property (4), the triangle inequality. Statistical distances that satisfy (1) and (2) are referred to as divergences.

Statistically close

The variation distance of two distributions and over a finite domain , (often referred to as statistical difference[2] or statistical distance[3] in cryptography) is defined as

.

We say that two probability ensembles and are statistically close if is a negligible function in .

Examples

Metrics

Divergences

See also

Notes

  1. ^ Dodge, Y. (2003)—entry for distance
  2. ^ Goldreich, Oded (2001). Foundations of Cryptography: Basic Tools (1st ed.). Berlin: Cambridge University Press. p. 106. ISBN 0-521-79172-3.
  3. ^ Reyzin, Leo. (Lecture Notes) Extractors and the Leftover Hash Lemma

References