Learned sparse retrieval: Difference between revisions
→top: Removed parameters. |
copyedits |
||
Line 1: | Line 1: | ||
{{Short description|Document search algorithm}}{{Redirect|SPLADE|the eating utensil|splayd}} |
{{Short description|Document search algorithm}}{{Redirect|SPLADE|the eating utensil|splayd}} |
||
'''Learned sparse retrieval''' or '''sparse neural search''' is an approach to [[Full-text search|text search]] which uses a sparse vector representation of queries and documents.<ref>{{Cite book |last1=Nguyen |first1=Thong |last2=MacAvaney |first2=Sean |last3=Yates |first3=Andrew |title=Advances in Information Retrieval |chapter=A Unified Framework for Learned Sparse Retrieval |date=2023 |editor-last=Kamps |editor-first=Jaap |editor2-last=Goeuriot |editor2-first=Lorraine |editor3-last=Crestani |editor3-first=Fabio |editor4-last=Maistro |editor4-first=Maria |editor5-last=Joho |editor5-first=Hideo |editor6-last=Davis |editor6-first=Brian |editor7-last=Gurrin |editor7-first=Cathal |editor8-last=Kruschwitz |editor8-first=Udo |editor9-last=Caputo |editor9-first=Annalina |chapter-url=https://link.springer.com/chapter/10.1007/978-3-031-28241-6_7 |series=Lecture Notes in Computer Science |volume=13982 |language=en |location=Cham |publisher=Springer Nature Switzerland |pages=101–116 |arxiv=2303.13416 |doi=10.1007/978-3-031-28241-6_7 |isbn=978-3-031-28241-6|s2cid=257585074 }}</ref> It borrows techniques both from lexical [[Bag-of-words model|bag-of-words]] and [[vector embedding]] algorithms, and is claimed to perform better than either alone. The best-known sparse neural search |
'''Learned sparse retrieval''' or '''sparse neural search''' is an approach to [[Full-text search|text search]] which uses a sparse vector representation of queries and documents.<ref>{{Cite book |last1=Nguyen |first1=Thong |last2=MacAvaney |first2=Sean |last3=Yates |first3=Andrew |title=Advances in Information Retrieval |chapter=A Unified Framework for Learned Sparse Retrieval |date=2023 |editor-last=Kamps |editor-first=Jaap |editor2-last=Goeuriot |editor2-first=Lorraine |editor3-last=Crestani |editor3-first=Fabio |editor4-last=Maistro |editor4-first=Maria |editor5-last=Joho |editor5-first=Hideo |editor6-last=Davis |editor6-first=Brian |editor7-last=Gurrin |editor7-first=Cathal |editor8-last=Kruschwitz |editor8-first=Udo |editor9-last=Caputo |editor9-first=Annalina |chapter-url=https://link.springer.com/chapter/10.1007/978-3-031-28241-6_7 |series=Lecture Notes in Computer Science |volume=13982 |language=en |location=Cham |publisher=Springer Nature Switzerland |pages=101–116 |arxiv=2303.13416 |doi=10.1007/978-3-031-28241-6_7 |isbn=978-3-031-28241-6|s2cid=257585074 }}</ref> It borrows techniques both from lexical [[Bag-of-words model|bag-of-words]] and [[vector embedding]] algorithms, and is claimed to perform better than either alone. The best-known sparse neural search systems are '''SPLADE'''<ref>{{Cite book |last1=Formal |first1=Thibault |last2=Piwowarski |first2=Benjamin |last3=Clinchant |first3=Stéphane |title=Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval |chapter=SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking |date=2021-07-11 |chapter-url=https://doi.org/10.1145/3404835.3463098 |series=SIGIR '21 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=2288–2292 |arxiv=2107.05720 |doi=10.1145/3404835.3463098 |isbn=978-1-4503-8037-9|s2cid=235792467 }}</ref> and its successor SPLADE v2.<ref name=":0">{{Cite arXiv |last1=Formal |first1=Thibault |last2=Piworwarski |first2=Benjamin |last3=Lassance |first3=Carlos |last4=Clinchant |first4=Stéphane |date=21 September 2021 |title=SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval |class=cs.IR |eprint=2109.10086v1}}</ref> Others include DeepCT,<ref>{{Cite book |last1=Dai |first1=Zhuyun |last2=Callan |first2=Jamie |title=Proceedings of the Web Conference 2020 |chapter=Context-Aware Document Term Weighting for Ad-Hoc Search |date=2020-04-20 |pages=1897–1907 |chapter-url=http://dx.doi.org/10.1145/3366423.3380258 |location=New York, NY, USA |publisher=ACM |doi=10.1145/3366423.3380258|isbn=9781450370233 |s2cid=218521094 }}</ref> uniCOIL,<ref>{{Cite arXiv |last1=Lin |first1=Jimmy |last2=Ma |first2=Xueguang |date=28 June 2021 |title=A few brief notes on DeepImpact, COIL, and a conceptual framework for information retrieval techniques |class=cs.IR |eprint=2106.14807}}</ref> EPIC,<ref>{{Cite book |last1=MacAvaney |first1=Sean |last2=Nardini |first2=Franco Maria |last3=Perego |first3=Raffaele |last4=Tonellotto |first4=Nicola |last5=Goharian |first5=Nazli |last6=Frieder |first6=Ophir |title=Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval |chapter=Expansion via Prediction of Importance with Contextualization |date=2020-07-25 |chapter-url=https://doi.org/10.1145/3397271.3401262 |series=SIGIR '20 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=1573–1576 |arxiv=2004.14245 |doi=10.1145/3397271.3401262 |isbn=978-1-4503-8016-4|s2cid=216641912 }}</ref> DeepImpact,<ref>{{Cite book |last1=Mallia |first1=Antonio |last2=Khattab |first2=Omar |last3=Suel |first3=Torsten |last4=Tonellotto |first4=Nicola |title=Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval |chapter=Learning Passage Impacts for Inverted Indexes |date=2021-07-11 |chapter-url=https://dl.acm.org/doi/10.1145/3404835.3463030 |series=SIGIR '21 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=1723–1727 |arxiv=2104.12016 |doi=10.1145/3404835.3463030 |isbn=978-1-4503-8037-9|s2cid=233394068 }}</ref> TILDE and TILDEv2,<ref>{{Cite arXiv |last1=Zhuang |first1=Shengyao |last2=Zuccon |first2=Guido |date=13 September 2021 |title=Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion |class=cs.IR |eprint=2108.08513}}</ref> Sparta,<ref>{{Cite arXiv |last1=Zhao |first1=Tiancheng |last2=Lu |first2=Xiaopeng |last3=Lee |first3=Kyusong |date=28 September 2020 |title=SPARTA: Efficient Open-Domain Question Answering via Sparse Transformer Matching Retrieval |class=cs.CL |eprint=2009.13013}}</ref> SPLADE-max, and DistilSPLADE-max.<ref name=":0" /> |
||
Some implementations of SPLADE have similar latency to [[Okapi BM25]] lexical search while giving as good results as state-of-the-art neural rankers on in-domain data.<ref>{{Cite book |last1=Lassance |first1=Carlos |last2=Clinchant |first2=Stéphane |title=Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval |chapter=An Efficiency Study for SPLADE Models |date=2022-07-07 |chapter-url=https://doi.org/10.1145/3477495.3531833 |series=SIGIR '22 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=2220–2226 |arxiv=2207.03834 |doi=10.1145/3477495.3531833 |isbn=978-1-4503-8732-3|s2cid=250340284 }}</ref> |
Some implementations of SPLADE have similar latency to [[Okapi BM25]] lexical search while giving as good results as state-of-the-art neural rankers on in-domain data.<ref>{{Cite book |last1=Lassance |first1=Carlos |last2=Clinchant |first2=Stéphane |title=Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval |chapter=An Efficiency Study for SPLADE Models |date=2022-07-07 |chapter-url=https://doi.org/10.1145/3477495.3531833 |series=SIGIR '22 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=2220–2226 |arxiv=2207.03834 |doi=10.1145/3477495.3531833 |isbn=978-1-4503-8732-3|s2cid=250340284 }}</ref> |
||
SPLADE is released under a [[Creative Commons NonCommercial license]].<ref>{{Cite web |title=splade/LICENSE at main · naver/splade |url=https://github.com/naver/splade/blob/main/LICENSE |access-date=2023-08-25 |website=GitHub |language=en}}</ref> |
The SPLADE software is released under a [[Creative Commons NonCommercial license]].<ref>{{Cite web |title=splade/LICENSE at main · naver/splade |url=https://github.com/naver/splade/blob/main/LICENSE |access-date=2023-08-25 |website=GitHub |language=en}}</ref> |
||
SPRINT is a toolkit for evaluating neural sparse retrieval systems.<ref>{{Cite book |last1=Thakur |first1=Nandan |last2=Wang |first2=Kexin |last3=Gurevych |first3=Iryna |last4=Lin |first4=Jimmy |title=Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval |chapter=SPRINT: A Unified Toolkit for Evaluating and Demystifying Zero-shot Neural Sparse Retrieval |date=2023-07-18 |chapter-url=https://doi.org/10.1145/3539618.3591902 |series=SIGIR '23 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=2964–2974 |arxiv=2307.10488 |doi=10.1145/3539618.3591902 |isbn=978-1-4503-9408-6|s2cid=259949923 }}</ref> |
SPRINT is a toolkit for evaluating neural sparse retrieval systems.<ref>{{Cite book |last1=Thakur |first1=Nandan |last2=Wang |first2=Kexin |last3=Gurevych |first3=Iryna |last4=Lin |first4=Jimmy |title=Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval |chapter=SPRINT: A Unified Toolkit for Evaluating and Demystifying Zero-shot Neural Sparse Retrieval |date=2023-07-18 |chapter-url=https://doi.org/10.1145/3539618.3591902 |series=SIGIR '23 |location=New York, NY, USA |publisher=Association for Computing Machinery |pages=2964–2974 |arxiv=2307.10488 |doi=10.1145/3539618.3591902 |isbn=978-1-4503-9408-6|s2cid=259949923 }}</ref> |
Revision as of 20:13, 9 September 2023
Learned sparse retrieval or sparse neural search is an approach to text search which uses a sparse vector representation of queries and documents.[1] It borrows techniques both from lexical bag-of-words and vector embedding algorithms, and is claimed to perform better than either alone. The best-known sparse neural search systems are SPLADE[2] and its successor SPLADE v2.[3] Others include DeepCT,[4] uniCOIL,[5] EPIC,[6] DeepImpact,[7] TILDE and TILDEv2,[8] Sparta,[9] SPLADE-max, and DistilSPLADE-max.[3]
Some implementations of SPLADE have similar latency to Okapi BM25 lexical search while giving as good results as state-of-the-art neural rankers on in-domain data.[10]
The SPLADE software is released under a Creative Commons NonCommercial license.[11]
SPRINT is a toolkit for evaluating neural sparse retrieval systems.[12]
External links
Notes
- ^ Nguyen, Thong; MacAvaney, Sean; Yates, Andrew (2023). "A Unified Framework for Learned Sparse Retrieval". In Kamps, Jaap; Goeuriot, Lorraine; Crestani, Fabio; Maistro, Maria; Joho, Hideo; Davis, Brian; Gurrin, Cathal; Kruschwitz, Udo; Caputo, Annalina (eds.). Advances in Information Retrieval. Lecture Notes in Computer Science. Vol. 13982. Cham: Springer Nature Switzerland. pp. 101–116. arXiv:2303.13416. doi:10.1007/978-3-031-28241-6_7. ISBN 978-3-031-28241-6. S2CID 257585074.
- ^ Formal, Thibault; Piwowarski, Benjamin; Clinchant, Stéphane (2021-07-11). "SPLADE: Sparse Lexical and Expansion Model for First Stage Ranking". Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR '21. New York, NY, USA: Association for Computing Machinery. pp. 2288–2292. arXiv:2107.05720. doi:10.1145/3404835.3463098. ISBN 978-1-4503-8037-9. S2CID 235792467.
- ^ a b Formal, Thibault; Piworwarski, Benjamin; Lassance, Carlos; Clinchant, Stéphane (21 September 2021). "SPLADE v2: Sparse Lexical and Expansion Model for Information Retrieval". arXiv:2109.10086v1 [cs.IR].
- ^ Dai, Zhuyun; Callan, Jamie (2020-04-20). "Context-Aware Document Term Weighting for Ad-Hoc Search". Proceedings of the Web Conference 2020. New York, NY, USA: ACM. pp. 1897–1907. doi:10.1145/3366423.3380258. ISBN 9781450370233. S2CID 218521094.
- ^ Lin, Jimmy; Ma, Xueguang (28 June 2021). "A few brief notes on DeepImpact, COIL, and a conceptual framework for information retrieval techniques". arXiv:2106.14807 [cs.IR].
- ^ MacAvaney, Sean; Nardini, Franco Maria; Perego, Raffaele; Tonellotto, Nicola; Goharian, Nazli; Frieder, Ophir (2020-07-25). "Expansion via Prediction of Importance with Contextualization". Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR '20. New York, NY, USA: Association for Computing Machinery. pp. 1573–1576. arXiv:2004.14245. doi:10.1145/3397271.3401262. ISBN 978-1-4503-8016-4. S2CID 216641912.
- ^ Mallia, Antonio; Khattab, Omar; Suel, Torsten; Tonellotto, Nicola (2021-07-11). "Learning Passage Impacts for Inverted Indexes". Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR '21. New York, NY, USA: Association for Computing Machinery. pp. 1723–1727. arXiv:2104.12016. doi:10.1145/3404835.3463030. ISBN 978-1-4503-8037-9. S2CID 233394068.
- ^ Zhuang, Shengyao; Zuccon, Guido (13 September 2021). "Fast Passage Re-ranking with Contextualized Exact Term Matching and Efficient Passage Expansion". arXiv:2108.08513 [cs.IR].
- ^ Zhao, Tiancheng; Lu, Xiaopeng; Lee, Kyusong (28 September 2020). "SPARTA: Efficient Open-Domain Question Answering via Sparse Transformer Matching Retrieval". arXiv:2009.13013 [cs.CL].
- ^ Lassance, Carlos; Clinchant, Stéphane (2022-07-07). "An Efficiency Study for SPLADE Models". Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR '22. New York, NY, USA: Association for Computing Machinery. pp. 2220–2226. arXiv:2207.03834. doi:10.1145/3477495.3531833. ISBN 978-1-4503-8732-3. S2CID 250340284.
- ^ "splade/LICENSE at main · naver/splade". GitHub. Retrieved 2023-08-25.
- ^ Thakur, Nandan; Wang, Kexin; Gurevych, Iryna; Lin, Jimmy (2023-07-18). "SPRINT: A Unified Toolkit for Evaluating and Demystifying Zero-shot Neural Sparse Retrieval". Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. SIGIR '23. New York, NY, USA: Association for Computing Machinery. pp. 2964–2974. arXiv:2307.10488. doi:10.1145/3539618.3591902. ISBN 978-1-4503-9408-6. S2CID 259949923.