Finished writing a draft article? Are you ready to request review of it by an experienced editor for possible inclusion in Wikipedia? Submit your draft for review!
Fast method for calculating the digits of π
The Chudnovsky algorithm is a fast method for calculating the digits of π , based on Ramanujan 's π formulae . It was published by the Chudnovsky brothers in 1988.[ 1]
It was used in the world record calculations of 2.7 trillion digits of π in December 2009,[ 2] 10 trillion digits in October 2011,[ 3] [ 4] 22.4 trillion digits in November 2016,[ 5] 31.4 trillion digits in September 2018–January 2019,[ 6] 50 trillion digits on January 29, 2020,[ 7] 62.8 trillion digits on August 14, 2021,[ 8] and 100 trillion digits on March 21, 2022.[ 9]
Algorithm
The algorithm is based on the negated Heegner number
d
=
−
163
{\displaystyle d=-163}
, the j -function
j
(
1
+
i
163
2
)
=
−
640320
3
{\displaystyle j\left({\tfrac {1+i{\sqrt {163}}}{2}}\right)=-640320^{3}}
, and on the following rapidly convergent generalized hypergeometric series :[ 2]
1
π
=
12
∑
k
=
0
∞
(
−
1
)
k
(
6
k
)
!
(
545140134
k
+
13591409
)
(
3
k
)
!
(
k
!
)
3
(
640320
)
3
k
+
3
/
2
{\displaystyle {\frac {1}{\pi }}=12\sum _{k=0}^{\infty }{\frac {(-1)^{k}(6k)!(545140134k+13591409)}{(3k)!(k!)^{3}(640320)^{3k+3/2}}}}
A detailed proof of this formula can be found here: [ 10]
This identity is similar to some of Ramanujan 's formulas involving π ,[ 2] and is an example of a Ramanujan–Sato series .
The time complexity of the algorithm is
O
(
n
(
log
n
)
3
)
{\displaystyle O\left(n(\log n)^{3}\right)}
.[ 11]
Optimizations
The optimization technique used for the world record computations is called binary splitting . Here is a video that explains the binary splitting of the algorithm: [ 12]
Binary splitting
A factor of
1
/
640320
3
/
2
{\textstyle 1/{640320^{3/2}}}
can be taken out of the sum and simplified to
1
π
=
1
426880
10005
∑
k
=
0
∞
(
−
1
)
k
(
6
k
)
!
(
545140134
k
+
13591409
)
(
3
k
)
!
(
k
!
)
3
(
640320
)
3
k
{\displaystyle {\frac {1}{\pi }}={\frac {1}{426880{\sqrt {10005}}}}\sum _{k=0}^{\infty }{\frac {(-1)^{k}(6k)!(545140134k+13591409)}{(3k)!(k!)^{3}(640320)^{3k}}}}
Let
f
(
n
)
=
(
−
1
)
n
(
6
n
)
!
(
3
n
)
!
(
n
!
)
3
(
640320
)
3
n
{\displaystyle f(n)={\frac {(-1)^{n}(6n)!}{(3n)!(n!)^{3}(640320)^{3n}}}}
, and substitute that into the sum.
1
π
=
1
426880
10005
∑
k
=
0
∞
f
(
k
)
⋅
(
545140134
k
+
13591409
)
{\displaystyle {\frac {1}{\pi }}={\frac {1}{426880{\sqrt {10005}}}}\sum _{k=0}^{\infty }{f(k)\cdot (545140134k+13591409)}}
f
(
n
)
f
(
n
−
1
)
{\displaystyle {\frac {f(n)}{f(n-1)}}}
can be simplified to
−
(
6
n
−
1
)
(
2
n
−
1
)
(
6
n
−
5
)
10939058860032000
n
3
{\displaystyle {\frac {-(6n-1)(2n-1)(6n-5)}{10939058860032000n^{3}}}}
, so
f
(
n
)
=
f
(
n
−
1
)
⋅
−
(
6
n
−
1
)
(
2
n
−
1
)
(
6
n
−
5
)
10939058860032000
n
3
{\displaystyle f(n)=f(n-1)\cdot {\frac {-(6n-1)(2n-1)(6n-5)}{10939058860032000n^{3}}}}
f
(
0
)
=
1
{\displaystyle f(0)=1}
from the original definition of
f
{\displaystyle f}
, so
f
(
n
)
=
∏
j
=
1
n
−
(
6
j
−
1
)
(
2
j
−
1
)
(
6
j
−
5
)
10939058860032000
j
3
{\displaystyle f(n)=\prod _{j=1}^{n}{\frac {-(6j-1)(2j-1)(6j-5)}{10939058860032000j^{3}}}}
This definition of
f
{\displaystyle f}
isn't defined for
n
=
0
{\displaystyle n=0}
, so compute the first term of the sum and use the new definition of
f
{\displaystyle f}
1
π
=
1
426880
10005
(
13591409
+
∑
k
=
1
∞
(
∏
j
=
1
k
−
(
6
j
−
1
)
(
2
j
−
1
)
(
6
j
−
5
)
10939058860032000
j
3
)
⋅
(
545140134
k
+
13591409
)
)
{\displaystyle {\frac {1}{\pi }}={\frac {1}{426880{\sqrt {10005}}}}{\Bigg (}13591409+\sum _{k=1}^{\infty }{{\Bigg (}\prod _{j=1}^{k}{\frac {-(6j-1)(2j-1)(6j-5)}{10939058860032000j^{3}}}{\Bigg )}\cdot (545140134k+13591409)}{\Bigg )}}
Let
P
(
a
,
b
)
=
∏
j
=
a
b
−
1
−
(
6
j
−
1
)
(
2
j
−
1
)
(
6
j
−
5
)
{\displaystyle P(a,b)=\prod _{j=a}^{b-1}{-(6j-1)(2j-1)(6j-5)}}
and
Q
(
a
,
b
)
=
∏
j
=
a
b
−
1
10939058860032000
j
3
{\displaystyle Q(a,b)=\prod _{j=a}^{b-1}{10939058860032000j^{3}}}
, so
1
π
=
1
426880
10005
(
13591409
+
∑
k
=
1
∞
P
(
1
,
k
+
1
)
Q
(
1
,
k
+
1
)
⋅
(
545140134
k
+
13591409
)
)
{\displaystyle {\frac {1}{\pi }}={\frac {1}{426880{\sqrt {10005}}}}{\Bigg (}13591409+\sum _{k=1}^{\infty }{{\frac {P(1,k+1)}{Q(1,k+1)}}\cdot (545140134k+13591409)}{\Bigg )}}
Let
S
(
a
,
b
)
=
∑
k
=
a
b
−
1
P
(
a
,
k
+
1
)
Q
(
a
,
k
+
1
)
⋅
(
545140134
k
+
13591409
)
{\displaystyle S(a,b)=\sum _{k=a}^{b-1}{{\frac {P(a,k+1)}{Q(a,k+1)}}\cdot (545140134k+13591409)}}
and
R
(
a
,
b
)
=
Q
(
a
,
b
)
⋅
S
(
a
,
b
)
{\displaystyle R(a,b)=Q(a,b)\cdot S(a,b)}
π
=
426880
10005
13591409
+
S
(
1
,
∞
)
{\displaystyle \pi ={\frac {426880{\sqrt {10005}}}{13591409+S(1,\infty )}}}
S
(
1
,
∞
)
{\displaystyle S(1,\infty )}
can never be computed, so instead compute
S
(
1
,
n
)
{\displaystyle S(1,n)}
and as
n
{\displaystyle n}
approaches
∞
{\displaystyle \infty }
, the
π
{\displaystyle \pi }
approximation will get better.
π
≈
426880
10005
13591409
+
S
(
1
,
n
)
{\displaystyle \pi \approx {\frac {426880{\sqrt {10005}}}{13591409+S(1,n)}}}
From the original definition of
R
{\displaystyle R}
,
S
(
a
,
b
)
=
R
(
a
,
b
)
Q
(
a
,
b
)
{\displaystyle S(a,b)={\frac {R(a,b)}{Q(a,b)}}}
π
≈
426880
10005
⋅
Q
(
1
,
n
)
13591409
Q
(
1
,
n
)
+
R
(
1
,
n
)
{\displaystyle \pi \approx {\frac {426880{\sqrt {10005}}\cdot Q(1,n)}{13591409Q(1,n)+R(1,n)}}}
Recursively computing the functions
Consider a value
m
{\displaystyle m}
such that
a
<
m
<
b
{\displaystyle a<m<b}
P
(
a
,
b
)
=
P
(
a
,
m
)
⋅
P
(
m
,
b
)
{\displaystyle P(a,b)=P(a,m)\cdot P(m,b)}
Q
(
a
,
b
)
=
Q
(
a
,
m
)
⋅
Q
(
m
,
b
)
{\displaystyle Q(a,b)=Q(a,m)\cdot Q(m,b)}
S
(
a
,
b
)
=
S
(
a
,
m
)
+
P
(
a
,
m
)
Q
(
a
,
m
)
S
(
m
,
b
)
{\displaystyle S(a,b)=S(a,m)+{\frac {P(a,m)}{Q(a,m)}}S(m,b)}
R
(
a
,
b
)
=
Q
(
m
,
b
)
R
(
a
,
m
)
+
P
(
a
,
m
)
R
(
m
,
b
)
{\displaystyle R(a,b)=Q(m,b)R(a,m)+P(a,m)R(m,b)}
Base case for recursion
Consider
b
=
a
+
1
{\displaystyle b=a+1}
P
(
a
,
a
+
1
)
=
−
(
6
a
−
1
)
(
2
a
−
1
)
(
6
a
−
5
)
{\displaystyle P(a,a+1)=-(6a-1)(2a-1)(6a-5)}
Q
(
a
,
a
+
1
)
=
10939058860032000
a
3
{\displaystyle Q(a,a+1)=10939058860032000a^{3}}
S
(
a
,
a
+
1
)
=
P
(
a
,
a
+
1
)
Q
(
a
,
a
+
1
)
⋅
(
545140134
a
+
13591409
)
{\displaystyle S(a,a+1)={\frac {P(a,a+1)}{Q(a,a+1)}}\cdot (545140134a+13591409)}
R
(
a
,
a
+
1
)
=
P
(
a
,
a
+
1
)
⋅
(
545140134
a
+
13591409
)
{\displaystyle R(a,a+1)=P(a,a+1)\cdot (545140134a+13591409)}
Python code
import decimal
def binary_split ( a , b ):
if b == a + 1 :
Pab = - ( 6 * a - 5 ) * ( 2 * a - 1 ) * ( 6 * a - 1 )
Qab = 10939058860032000 * a ** 3
Rab = Pab * ( 545140134 * a + 13591409 )
else :
m = ( a + b ) // 2
Pam , Qam , Ram = binary_split ( a , m )
Pmb , Qmb , Rmb = binary_split ( m , b )
Pab = Pam * Pmb
Qab = Qam * Qmb
Rab = Qmb * Ram + Pam * Rmb
return Pab , Qab , Rab
def chudnovsky ( n ):
P1n , Q1n , R1n = binary_split ( 1 , n )
return ( 426880 * decimal . Decimal ( 10005 ) . sqrt () * Q1n ) / ( 13591409 * Q1n + R1n )
print ( chudnovsky ( 2 )) # 3.141592653589793238462643384
Notes
e
π
163
≈
640320
3
+
743.99999999999925
…
{\displaystyle e^{\pi {\sqrt {163}}}\approx 640320^{3}+743.99999999999925\dots }
640320
3
/
24
=
10939058860032000
{\displaystyle 640320^{3}/24=10939058860032000}
545140134
=
163
⋅
127
⋅
19
⋅
11
⋅
7
⋅
3
2
⋅
2
{\displaystyle 545140134=163\cdot 127\cdot 19\cdot 11\cdot 7\cdot 3^{2}\cdot 2}
13591409
=
13
⋅
1045493
{\displaystyle 13591409=13\cdot 1045493}
See also
References
^ Chudnovsky, David; Chudnovsky, Gregory (1988), Approximation and complex multiplication according to Ramanujan , Ramanujan revisited: proceedings of the centenary conference
^ a b c Baruah, Nayandeep Deka; Berndt, Bruce C.; Chan, Heng Huat (2009), "Ramanujan's series for 1/π : a survey", American Mathematical Monthly , 116 (7): 567– 587, doi :10.4169/193009709X458555 , JSTOR 40391165 , MR 2549375
^ Yee, Alexander; Kondo, Shigeru (2011), 10 Trillion Digits of Pi: A Case Study of summing Hypergeometric Series to high precision on Multicore Systems , Technical Report, Computer Science Department, University of Illinois, hdl :2142/28348
^ Aron, Jacob (March 14, 2012), "Constants clash on pi day" , New Scientist
^ "22.4 Trillion Digits of Pi" . www.numberworld.org .
^ "Google Cloud Topples the Pi Record" . www.numberworld.org/ .
^ "The Pi Record Returns to the Personal Computer" . www.numberworld.org/ .
^ "Pi-Challenge - Weltrekordversuch der FH Graubünden - FH Graubünden" . www.fhgr.ch . Retrieved 2021-08-17 .
^ "Calculating 100 trillion digits of pi on Google Cloud" . cloud.google.com . Retrieved 2022-06-10 .
^ Milla, Lorenz (2018), A detailed proof of the Chudnovsky formula with means of basic complex analysis , arXiv :1809.00533
^ "y-cruncher - Formulas" . www.numberworld.org . Retrieved 2018-02-25 .
^ Rayton, Joshua, How is π calculated to trillions of digits? {{citation }}
: CS1 maint: url-status (link )