Jump to content

Quotient rule: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Undid revision 1182216565 by 73.246.84.174 (talk) reverting vandalism
Tags: Undo Reverted
Undid revision 1182235548 by 2003:C9:2713:EF00:FC53:3FD:1EB1:8ACC (talk)
Tags: Undo Reverted
Line 2: Line 2:
{{short description|Formula for the derivative of a ratio of functions}}
{{short description|Formula for the derivative of a ratio of functions}}
In [[calculus]], the '''quotient rule''' is a method of finding the [[derivative]] of a [[function (mathematics)|function]] that is the ratio of two differentiable functions.<ref>{{cite book | last=Stewart | first=James | author-link=James Stewart (mathematician) | title=Calculus: Early Transcendentals | publisher=[[Brooks/Cole]] | edition=6th | year=2008 | isbn=978-0-495-01166-8 | url-access=registration | url=https://archive.org/details/calculusearlytra00stew_1 }}</ref><ref>{{cite book | last1=Larson | first1=Ron | author-link=Ron Larson (mathematician)| last2=Edwards | first2=Bruce H. | title=Calculus | publisher=[[Brooks/Cole]] | edition=9th | year=2009 | isbn=978-0-547-16702-2}}</ref><ref>{{cite book | last1 = Thomas | first1 = George B. | last2=Weir | first2= Maurice D. | last3=Hass | first3=Joel | author3-link = Joel Hass | author-link=George B. Thomas | title=Thomas' Calculus: Early Transcendentals | publisher=[[Addison-Wesley]] | year=2010 | edition=12th | isbn=978-0-321-58876-0}}</ref> Let <math>h(x)=\frac{f(x)}{g(x)}</math>, where both {{mvar|f}} and {{mvar|g}} are differentiable and <math>g(x)\neq 0.</math> The quotient rule states that the derivative of {{math|''h''(''x'')}} is
In [[calculus]], the '''quotient rule''' is a method of finding the [[derivative]] of a [[function (mathematics)|function]] that is the ratio of two differentiable functions.<ref>{{cite book | last=Stewart | first=James | author-link=James Stewart (mathematician) | title=Calculus: Early Transcendentals | publisher=[[Brooks/Cole]] | edition=6th | year=2008 | isbn=978-0-495-01166-8 | url-access=registration | url=https://archive.org/details/calculusearlytra00stew_1 }}</ref><ref>{{cite book | last1=Larson | first1=Ron | author-link=Ron Larson (mathematician)| last2=Edwards | first2=Bruce H. | title=Calculus | publisher=[[Brooks/Cole]] | edition=9th | year=2009 | isbn=978-0-547-16702-2}}</ref><ref>{{cite book | last1 = Thomas | first1 = George B. | last2=Weir | first2= Maurice D. | last3=Hass | first3=Joel | author3-link = Joel Hass | author-link=George B. Thomas | title=Thomas' Calculus: Early Transcendentals | publisher=[[Addison-Wesley]] | year=2010 | edition=12th | isbn=978-0-321-58876-0}}</ref> Let <math>h(x)=\frac{f(x)}{g(x)}</math>, where both {{mvar|f}} and {{mvar|g}} are differentiable and <math>g(x)\neq 0.</math> The quotient rule states that the derivative of {{math|''h''(''x'')}} is
:<math>h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.</math>
:<math>h'(x) = \frac{f'(x)g(x) + f(x)g'(x)}{g(x)^2}.</math>


It is provable in many ways by using other [[Differentiation rules|derivative rules]].
It is provable in many ways by using other [[Differentiation rules|derivative rules]].
Line 12: Line 12:
Given <math>h(x)=\frac{e^x}{x^2}</math>, let <math>f(x)=e^x, g(x)=x^2</math>, then using the quotient rule:<math display="block">\begin{align}
Given <math>h(x)=\frac{e^x}{x^2}</math>, let <math>f(x)=e^x, g(x)=x^2</math>, then using the quotient rule:<math display="block">\begin{align}
\frac{d}{dx} \left(\frac{e^x}{x^2}\right) &= \frac{\left(\frac{d}{dx}e^x\right)(x^2) - (e^x)\left(\frac{d}{dx} x^2\right)}{(x^2)^2} \\
\frac{d}{dx} \left(\frac{e^x}{x^2}\right) &= \frac{\left(\frac{d}{dx}e^x\right)(x^2) - (e^x)\left(\frac{d}{dx} x^2\right)}{(x^2)^2} \\
&= \frac{(e^x)(x^2) - (e^x)(2x)}{x^4} \\
&= \frac{(e^x)(x^2) + (e^x)(2x)}{x^4} \\
&= \frac{x^2 e^x - 2x e^x}{x^4} \\
&= \frac{x^2 e^x + 2x e^x}{x^4} \\
&= \frac{x e^x - 2 e^x}{x^3} \\
&= \frac{x e^x + 2 e^x}{x^3} \\
&= \frac{e^x(x - 2)}{x^3}.
&= \frac{e^x(x + 2)}{x^3}.
\end{align}</math>
\end{align}</math>


Line 23: Line 23:
<math display="block">\begin{align}
<math display="block">\begin{align}
\frac{d}{dx} \tan x &= \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right) \\
\frac{d}{dx} \tan x &= \frac{d}{dx} \left(\frac{\sin x}{\cos x}\right) \\
&= \frac{\left(\frac{d}{dx}\sin x\right)(\cos x) - (\sin x)\left(\frac{d}{dx}\cos x\right)}{\cos^2 x} \\
&= \frac{\left(\frac{d}{dx}\sin x\right)(\cos x) + (\sin x)\left(\frac{d}{dx}\cos x\right)}{\cos^2 x} \\
&= \frac{(\cos x)(\cos x) - (\sin x)(-\sin x)}{\cos^2 x} \\
&= \frac{(\cos x)(\cos x) + (\sin x)(-\sin x)}{\cos^2 x} \\
&= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \\
&= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} \\
&= \frac{1}{\cos^2 x} = \sec^2 x.
&= \frac{1}{\cos^2 x} = \csc^2 x.
\end{align}</math>
\end{align}</math>


== Reciprocal rule ==
== Reciprocal rule ==
{{Main|Reciprocal rule}}
{{Main|Reciprocal rule}}
The reciprocal rule is a special case of the quotient rule in which the numerator <math>f(x)=1</math>. Applying the quotient rule gives<math display="block">h'(x)=\frac{d}{dx}\left[\frac{1}{g(x)}\right]=\frac{0 \cdot g(x) - 1 \cdot g'(x)}{g(x)^2}=\frac{-g'(x)}{g(x)^2}.</math>
The reciprocal rule is a special case of the quotient rule in which the numerator <math>f(x)=1</math>. Applying the quotient rule gives<math display="block">h'(x)=\frac{d}{dx}\left[\frac{1}{g(x)}\right]=\frac{0 \cdot g(x) + 1 \cdot g'(x)}{g(x)^2}=\frac{g'(x)}{g(x)^2}.</math>


Note that utilizing the [[chain rule]] yields the same result.
Note that utilizing the [[chain rule]] yields the same result.
Line 45: Line 45:
&= \left[\lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x)}{k} - \lim_{k\to 0}\frac{f(x)g(x+k) - f(x)g(x)}{k} \right] \cdot \frac{1}{g(x)^2} \\
&= \left[\lim_{k\to 0} \frac{f(x+k)g(x) - f(x)g(x)}{k} - \lim_{k\to 0}\frac{f(x)g(x+k) - f(x)g(x)}{k} \right] \cdot \frac{1}{g(x)^2} \\
&= \left[\lim_{k\to 0} \frac{f(x+k) - f(x)}{k} \cdot g(x) - f(x) \cdot \lim_{k\to 0}\frac{g(x+k) - g(x)}{k} \right] \cdot \frac{1}{g(x)^2} \\
&= \left[\lim_{k\to 0} \frac{f(x+k) - f(x)}{k} \cdot g(x) - f(x) \cdot \lim_{k\to 0}\frac{g(x+k) - g(x)}{k} \right] \cdot \frac{1}{g(x)^2} \\
&= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.
&= \frac{f'(x)g(x) + f(x)g'(x)}{g(x)^2}.
\end{align}</math>The limit evaluation <math>\lim_{k \to 0}\frac{1}{g(x+k)g(x)}=\frac{1}{g(x)^2}</math> is justified by the differentiability of <math>g(x)</math>, implying continuity, which can be expressed as <math>\lim_{k \to 0}g(x+k) = g(x)</math>.
\end{align}</math>The limit evaluation <math>\lim_{k \to 0}\frac{1}{g(x+k)g(x)}=\frac{1}{g(x)^2}</math> is justified by the differentiability of <math>g(x)</math>, implying continuity, which can be expressed as <math>\lim_{k \to 0}g(x+k) = g(x)</math>.


Line 56: Line 56:
<math display="block">\begin{align}
<math display="block">\begin{align}
h'(x) &= \frac{f'(x) -g'(x)h(x)}{g(x)} \\
h'(x) &= \frac{f'(x) -g'(x)h(x)}{g(x)} \\
&= \frac{f'(x) - g'(x)\cdot\frac{f(x)}{g(x)}}{g(x)} \\
&= \frac{f'(x) + g'(x)\cdot\frac{f(x)}{g(x)}}{g(x)} \\
&= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.
&= \frac{f'(x)g(x) + f(x)g'(x)}{g(x)^2}.
\end{align}</math>
\end{align}</math>


Line 75: Line 75:
&= {\frac{g(x)}{g(x)}}\cdot{\frac{f'(x)}{g(x)}} - \frac{f(x)g'(x)}{g(x)^2} \\
&= {\frac{g(x)}{g(x)}}\cdot{\frac{f'(x)}{g(x)}} - \frac{f(x)g'(x)}{g(x)^2} \\


&= \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}.
&= \frac{f'(x)g(x) + f(x)g'(x)}{g(x)^2}.
\end{align}</math>
\end{align}</math>


Line 92: Line 92:
h'(x)&=h(x)\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\
h'(x)&=h(x)\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\
&=\frac{f(x)}{g(x)}\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\
&=\frac{f(x)}{g(x)}\left[\frac{f'(x)}{f(x)}-\frac{g'(x)}{g(x)}\right]\\
&=\frac{f'(x)}{g(x)}-\frac{f(x)g'(x)}{g(x)^2}\\
&=\frac{f'(x)}{g(x)}+\frac{f(x)g'(x)}{g(x)^2}\\
&=\frac{f'(x)g(x)-f(x)g'(x)}{g(x)^2}.
&=\frac{f'(x)g(x)+f(x)g'(x)}{g(x)^2}.
\end{align}</math>
\end{align}</math>


Line 99: Line 99:


==Higher order derivatives==
==Higher order derivatives==
Implicit differentiation can be used to compute the {{mvar|n}}th derivative of a quotient (partially in terms of its first {{math|''n'' &minus; 1}} derivatives). For example, differentiating <math>f=gh</math> twice (resulting in <math>f'' = g''h + 2g'h' + gh''</math>) and then solving for <math>h''</math> yields<math display="block">h'' = \left(\frac{f}{g}\right)'' = \frac{f''-g''h-2g'h'}{g}.</math>
Implicit differentiation can be used to compute the {{mvar|n}}th derivative of a quotient (partially in terms of its first {{math|''n'' &minus; 1}} derivatives). For example, differentiating <math>f=gh</math> twice (resulting in <math>f'' = g''h + 2g'h' + gh''</math>) and then solving for <math>h''</math> yields<math display="block">h'' = \left(\frac{f}{g}\right)'' = \frac{f''-g''h-2g'h'}{g'}.</math>
==See also==
==See also==



Revision as of 13:46, 28 October 2023

In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions.[1][2][3] Let , where both f and g are differentiable and The quotient rule states that the derivative of h(x) is

It is provable in many ways by using other derivative rules.

Examples

Example 1: Basic example

Given , let , then using the quotient rule:

Example 2: Derivative of tangent function

The quotient rule can be used to find the derivative of as follows:

Reciprocal rule

The reciprocal rule is a special case of the quotient rule in which the numerator . Applying the quotient rule gives

Note that utilizing the chain rule yields the same result.

Proofs

Proof from derivative definition and limit properties

Let Applying the definition of the derivative and properties of limits gives the following proof, with the term added and subtracted to allow splitting and factoring in subsequent steps without affecting the value:The limit evaluation is justified by the differentiability of , implying continuity, which can be expressed as .

Proof using implicit differentiation

Let so that

The product rule then gives

Solving for and substituting back for gives:

Proof using the reciprocal rule or chain rule

Let

Then the product rule gives

To evaluate the derivative in the second term, apply the reciprocal rule, or the power rule along with the chain rule:

Substituting the result into the expression gives

Proof by logarithmic differentiation

Let Taking the absolute value and natural logarithm of both sides of the equation gives

Applying properties of the absolute value and logarithms,

Taking the logarithmic derivative of both sides,

Solving for and substituting back for gives:

Note: Taking the absolute value of the functions is necessary for the logarithmic differentiation of functions that may have negative values, as logarithms are only real-valued for positive arguments. This works because , which justifies taking the absolute value of the functions for logarithmic differentiation.

Higher order derivatives

Implicit differentiation can be used to compute the nth derivative of a quotient (partially in terms of its first n − 1 derivatives). For example, differentiating twice (resulting in ) and then solving for yields

See also

References

  1. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks/Cole. ISBN 978-0-495-01166-8.
  2. ^ Larson, Ron; Edwards, Bruce H. (2009). Calculus (9th ed.). Brooks/Cole. ISBN 978-0-547-16702-2.
  3. ^ Thomas, George B.; Weir, Maurice D.; Hass, Joel (2010). Thomas' Calculus: Early Transcendentals (12th ed.). Addison-Wesley. ISBN 978-0-321-58876-0.