Jump to content

Metals of antiquity: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 3: Line 3:
[[File:Amulet to protect against health problems, Germany, 1701-190 Wellcome L0058949.jpg|thumb|German [[amulet]] to protect against disease (18th century); it is made from an alloy of the seven alchemical metals: lead, tin, iron, gold, copper, mercury and silver.]]
[[File:Amulet to protect against health problems, Germany, 1701-190 Wellcome L0058949.jpg|thumb|German [[amulet]] to protect against disease (18th century); it is made from an alloy of the seven alchemical metals: lead, tin, iron, gold, copper, mercury and silver.]]
[[File:Metal production in Ancient Middle East.svg|thumb|Metal production in the ancient Middle East]]
[[File:Metal production in Ancient Middle East.svg|thumb|Metal production in the ancient Middle East]]
The '''metals of antiquity''' are the seven [[metal]]s which humans had identified and found use for in prehistoric times in Africa, Europe and throughout Asia:<ref name="History of Technology, 29" /> [[gold]], [[silver]], [[copper]], [[tin]], [[lead]], [[iron]], and [[mercury (element)|mercury]]. These seven are the metals from which the classical world was forged. This contrasts greatly with the situation today, with over 90 elemental metals known.
The '''metals of antiquity''' are the seven [[metal]]s which humans had identified and found use for in prehistoric times in Africa, Europe and throughout Asia:<ref name="History of Technology, 29" /> [[gold]], [[silver]], [[copper]], [[tin]], [[lead]], [[iron]], and [[mercury (element)|mercury]]. These seven are the metals from which the classical world was forged. [[Antimony]] was also known at this time, but it was not recognised as distinct until much later: [[Pedanius Dioscorides|Dioscorides]] and [[Pliny the Elder|Pliny]] both describe its production from [[stibnite]], but wrongly identify it as tin.<ref name="moorey">{{cite book|last=Moorey|first=P. R. S.|date=1994|title=Ancient Mesopotamian Materials and Industries: the Archaeological Evidence|place=New York|publisher=Clarendon Press|page=241|url=https://books.google.com/books?id=P_Ixuott4doC&pg=PA241|isbn=978-1-57506-042-2}}</ref><ref>{{cite book|last1=Healy|first1=John F.|title=Pliny the Elder on Science and Technology|date=1999|publisher=Oxford University Press|isbn=9780198146872|url=https://books.google.com/books?id=Hz6D4H-s5psC|access-date=26 January 2018}}</ref> This contrasts greatly with the situation today, with over 90 elemental metals known. [[Platinum]] was known in the New World, but was not known to Europeans until the 18th century. [[Arsenic]] (somewhat questionable as a metal) was known by the 4th century.<ref>{{cite book|last1=Holmyard|first1=Eric John|title=Alchemy|date=1957|publisher=Courier Corporation|isbn=9780486262987|url=https://books.google.com/books?id=7Bt-kwKRUzUC|access-date=26 January 2018}}</ref>


A few other elemental metals were being used at this time, though they were not yet recognised as being on par with the main seven. [[Antimony]] was also known at this time, but it was not recognised as distinct until much later: [[Pedanius Dioscorides|Dioscorides]] and [[Pliny the Elder|Pliny]] both describe its production from [[stibnite]], but wrongly identify it as tin.<ref name="moorey">{{cite book|last=Moorey|first=P. R. S.|date=1994|title=Ancient Mesopotamian Materials and Industries: the Archaeological Evidence|place=New York|publisher=Clarendon Press|page=241|url=https://books.google.com/books?id=P_Ixuott4doC&pg=PA241|isbn=978-1-57506-042-2}}</ref><ref>{{cite book|last1=Healy|first1=John F.|title=Pliny the Elder on Science and Technology|date=1999|publisher=Oxford University Press|isbn=9780198146872|url=https://books.google.com/books?id=Hz6D4H-s5psC|access-date=26 January 2018}}</ref> Brass (a copper-[[zinc]] alloy) was known in ancient times, but elemental zinc was not known till much later. [[Platinum]] was known in the New World, but was not known to Europeans until the 18th century. [[Arsenic]] (somewhat questionable as a metal) was known by the 4th century.<ref>{{cite book|last1=Holmyard|first1=Eric John|title=Alchemy|date=1957|publisher=Courier Corporation|isbn=9780486262987|url=https://books.google.com/books?id=7Bt-kwKRUzUC|access-date=26 January 2018}}</ref> [[Bismuth]] only began to be recognised as distinct around 1500 by the European and [[Inca]]n civilisations. The first elemental metal with a clearly identifiable discoverer is [[cobalt]], discovered in 1735 by [[Georg Brandt]], by which time the [[Scientific Revolution]] was in full swing.<ref name=Miskowiec>{{cite journal |last1=Miśkowiec |first1=Paweł |date=2022 |title=Name game: the naming history of the chemical elements—part 1—from antiquity till the end of 18th century |journal=Foundations of Chemistry |volume= 25|issue= |pages= 29–51|doi=10.1007/s10698-022-09448-5 |doi-access=free }}</ref>
Brass (a copper-[[zinc]] alloy) was known in ancient times, but elemental zinc was not known till much later. [[Bismuth]] only began to be recognised as distinct around 1500 by the European and [[Inca]]n civilisations. The first elemental metal with a clearly identifiable discoverer is [[cobalt]], discovered in 1735 by [[Georg Brandt]], by which time the [[Scientific Revolution]] was in full swing.<ref name=Miskowiec>{{cite journal |last1=Miśkowiec |first1=Paweł |date=2022 |title=Name game: the naming history of the chemical elements—part 1—from antiquity till the end of 18th century |journal=Foundations of Chemistry |volume= 25|issue= |pages= 29–51|doi=10.1007/s10698-022-09448-5 |doi-access=free }}</ref>


==Characteristics==
==Characteristics==

Revision as of 15:51, 4 January 2024

German amulet to protect against disease (18th century); it is made from an alloy of the seven alchemical metals: lead, tin, iron, gold, copper, mercury and silver.
Metal production in the ancient Middle East

The metals of antiquity are the seven metals which humans had identified and found use for in prehistoric times in Africa, Europe and throughout Asia:[1] gold, silver, copper, tin, lead, iron, and mercury. These seven are the metals from which the classical world was forged. Antimony was also known at this time, but it was not recognised as distinct until much later: Dioscorides and Pliny both describe its production from stibnite, but wrongly identify it as tin.[2][3] This contrasts greatly with the situation today, with over 90 elemental metals known. Platinum was known in the New World, but was not known to Europeans until the 18th century. Arsenic (somewhat questionable as a metal) was known by the 4th century.[4]

Brass (a copper-zinc alloy) was known in ancient times, but elemental zinc was not known till much later. Bismuth only began to be recognised as distinct around 1500 by the European and Incan civilisations. The first elemental metal with a clearly identifiable discoverer is cobalt, discovered in 1735 by Georg Brandt, by which time the Scientific Revolution was in full swing.[5]

Characteristics

Melting point

The metals of antiquity generally have low melting points, with iron being the exception.

  • Mercury melts at −38.829 °C (−37.89 °F)[6] (being liquid at room temperature).
  • Tin melts at 231 °C (449 °F)[6]
  • Lead melts at 327 °C (621 °F)[6]
  • Silver at 961 °C (1763 °F)[6]
  • Gold at 1064 °C (1947 °F)[6]
  • Copper at 1084 °C (1984 °F)[6]
  • Iron is the outlier at 1538 °C (2800 °F),[6] making it far more difficult to melt in antiquity. Cultures developed ironworking proficiency at different rates; however, evidence from the Near East suggests that smelting was possible but impractical circa 1500 BC, and relatively commonplace across most of Eurasia by 500 BC.[7] However, until this period, generally known as the Iron Age, ironwork would have been impossible.

The other metals discovered before the Scientific Revolution largely fit the pattern, except for high-melting platinum:

  • Bismuth melts at 272 °C (521 °F)[6]
  • Zinc melts at 420 °C (787 °F),[6] but importantly boils at 907 °C (1665 °F), a temperature below the melting point of silver. Consequently, at the temperatures needed to reduce zinc oxide to the metal, the metal is already gaseous. Consequently, although its use in brass (a copper-zinc alloy) is attested in antiquity, the pure metal does not appear in the historical record until much later,[8] around AD 1025–1280 in India.[9]
  • Arsenic sublimes at 615 °C (1137 °F), passing directly from the solid state to the gaseous state.[6]
  • Antimony melts at 631 °C (1167 °F)[6]
  • Platinum melts at 1768 °C (3215 °F), even higher than iron.[6] Native South Americans worked with it instead by sintering: they combined gold and platinum powders, until the alloy became soft enough to shape with tools.[10][11]

Extraction

While all the metals of antiquity but tin and lead occur natively, only gold and silver are commonly found as the native metal.

  • Gold and silver occur frequently in their native form
  • Mercury compounds are reduced to elemental mercury simply by low-temperature heating (500 °C).
  • Tin and iron occur as oxides and can be reduced with carbon monoxide (produced by, for example, burning charcoal) at 900 °C.
  • Copper and lead compounds can be roasted to produce the oxides, which are then reduced with carbon monoxide at 900 °C.
  • Meteoric iron is often found as the native metal and it was the earliest source for iron objects known to humanity

Rarity

While widely known during antiquity, most of these metals are by no means common.

  • Iron is the 4th-most abundant element in the Earth's crust (approximately 50,000ppm, or 4.1% by mass)
  • Copper is next at 26th (50ppm)
  • Lead is 37th (14ppm)
  • Tin is 49th (2.2ppm)
  • Silver is 65th (70ppb)
  • Mercury is 66th (50ppb)
  • Gold is the 72nd (1.1ppb)

Yet all were known and available in tangible quantities in ancient times.

Additionally, despite being approximately 1,000 times more abundant in the crust than the next most abundant ancient metal, iron was the last to become available due to its melting point (see above), including requiring tools made from alloys such as bronze to work in quantity. Other comparably abundant elements, such as titanium (approximately 4,400ppm) and aluminium (approximately 83,000ppm),[12] were not available until the modern era. This was due almost entirely to the huge quantities of energy required to purify ores of these elements. Energy requirements and tool availability were, therefore, the primary limiting factors affecting an ancient civilisation's ability to access metals, rather than those metals' relative abundances.

Symbolism

The practice of alchemy in the Western world, based on a Hellenistic and Babylonian approach to planetary astronomy, often ascribed a symbolic association between the seven then-known celestial bodies and the metals known to the Greeks and Babylonians during antiquity. Additionally, some alchemists and astrologers believed there was an association, sometimes called a rulership, between days of the week, the alchemical metals, and the planets that were said to hold "dominion" over them.[13][14] There was some early variation, but the most common associations since antiquity are the following:

Metal Body Symbol Day of week
Gold Sun ☉︎ Sunday
Silver Moon Monday
Iron Mars Tuesday
Mercury Mercury Wednesday
Tin Jupiter Thursday
Copper Venus Friday
Lead Saturn Saturday

See also

References

  1. ^ Smith, Cyril Stanley; Forbes, R.J. (1957). "2: Metallurgy and Assaying". In Singer; Holmyard; Hall; Williams (eds.). A History Of Technology. Oxford University Press. p. 29.
  2. ^ Moorey, P. R. S. (1994). Ancient Mesopotamian Materials and Industries: the Archaeological Evidence. New York: Clarendon Press. p. 241. ISBN 978-1-57506-042-2.
  3. ^ Healy, John F. (1999). Pliny the Elder on Science and Technology. Oxford University Press. ISBN 9780198146872. Retrieved 26 January 2018.
  4. ^ Holmyard, Eric John (1957). Alchemy. Courier Corporation. ISBN 9780486262987. Retrieved 26 January 2018.
  5. ^ Miśkowiec, Paweł (2022). "Name game: the naming history of the chemical elements—part 1—from antiquity till the end of 18th century". Foundations of Chemistry. 25: 29–51. doi:10.1007/s10698-022-09448-5.
  6. ^ a b c d e f g h i j k l Winter, Mark. "The periodic table of the elements by WebElements". www.webelements.com.
  7. ^ Erb-Satullo, Nathaniel L. (December 2019). "The Innovation and Adoption of Iron in the Ancient Near East". Journal of Archaeological Research. 27 (4): 557–607. doi:10.1007/s10814-019-09129-6.
  8. ^ Alam, Ishrat (2020). "The history of zinc and its use in pre-modern India". Studies in People's History. 7 (1). doi:10.1177/2348448920908237. Retrieved 4 January 2024.
  9. ^ Li, Yuniu; Xiao, Birui; Juleff, Gill; Huang, Wan; Li, Dadi; Bai, Jiujiang (2020). "Ancient zinc smelting in the Upper and Middle Yangtze River region". Antiquity. 94 (375). doi:10.15184/aqy.2020.83.
  10. ^ Bergsøe, Paul (1936). "Metallurgy of Gold and Platinum among the Pre-Columbian Indians". Nature. 137 (3453). Springer Science and Business Media LLC: 29. Bibcode:1936Natur.137...29B. doi:10.1038/137029a0. ISSN 0028-0836. S2CID 4100269.
  11. ^ Meeks, N.; La Niece, S.; Estevez, P. (2002). "The technology of early platinum plating: a gold mask of the La Tolita culture, Ecuador". Archaeometry. 44 (2). Wiley: 273–284. doi:10.1111/1475-4754.t01-1-00059. ISSN 0003-813X.
  12. ^ Darling, David. "terrestrial abundance of elements". www.daviddarling.info. Retrieved 3 January 2021.
  13. ^ Ball, Philip (2007). The Devil's Doctor: Paracelsus and the World of Renaissance Magic and Science. London: Arrow. ISBN 978-0-09-945787-9.
  14. ^ Kollerstrom, Nick. "The Metal-Planet Relationship: A Study of Celestial Influence". homepages.ihug.com.au. Retrieved 3 January 2021.

Further reading

  • http://www.webelements.com/ cited from these sources:
    • A.M. James and M.P. Lord in Macmillan's Chemical and Physical Data, Macmillan, London, UK, 1992.
    • G.W.C. Kaye and T.H. Laby in Tables of physical and chemical constants, Longman, London, UK, 15th edition, 1993.